Research Article
BibTex RIS Cite

Comparative Analysis of Material Characteristics and Biomechanical Performance in Passive Ankle-Foot Orthoses

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1586101

Abstract

Passive ankle-foot orthoses (AFOs) provide essential joint stabilization and limit excessive movement, serving as a cornerstone in biomechanical gait analysis. This study innovatively developed three distinct passive AFOs using thermoplastic polyurethane (TPU), high-impact polystyrene (HIPS), and polylactic acid (PLA) materials, along with a silicone sole, demonstrating enhanced mechanical properties and functional performance. The materials were analyzed using Field Emission Scanning Electron Microscopy (FE-SEM), tensile testing, finite element analysis (FEA), and gait analysis. In particular, FE-SEM revealed micrometer-scale surface roughness (<50 μm), confirming the materials' microstructural consistency. The PLA-based AFO outperformed the HIPS and TPU variants, exhibiting a ~73.43% and ~98.93% higher strength, respectively, in tensile tests. Additionally, PLA exhibited a 16.04% lower displacement compared to HIPS and a 99.25% lower displacement compared to TPU in FEA. Moreover, gait analysis quantified a 24.14% reduction in ankle angular displacement for the TPU-based AFO, 40.38% for the HIPS-based AFO, and 52.39% for the PLA-based AFO, all relative to the without AFO condition, with the PLA AFO demonstrating the most significant enhancement in joint stabilization. Ultimately, this study revealed notable progress in passive AFO design, highlighted PLA's superior performance in joint stability, and laid the groundwork for future advancements in orthosis designs.

Ethical Statement

The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Supporting Institution

Istanbul Arel University

Project Number

2022-ST-002

Thanks

The authors acknowledge the Artificial Intelligence Studies, Application, and Research Center (ArelMED-I) at Istanbul Arel University for providing essential technical support in digital measurements.

References

  • [1] Wu F., Meng Z., Yang K. and Li J., “Effects of ankle–foot orthoses on gait parameters in post-stroke patients with different brunnstrom stages of the lower limb: A single-center crossover trial”, European Journal of Medical Research, 29(1): 235, (2024).
  • [2] Marconi G. P., Gopalai A. A. and Chauhan S., “A hybrid ankle-foot orthosis with soft pneumatic actuation”, Mechatronics, 99: 103171, (2024).
  • [3] Bai Y., Gao X., Zhao J., Jin F., Dai F. and Lv Y., “A portable ankle-foot rehabilitation orthosis powered by electric motor”, The Open Mechanical Engineering Journal, 9(1): 982–991, (2015).
  • [4] Neubauer B. and Durfee W., “Preliminary design and engineering evaluation of a hydraulic ankle–foot orthosis”, Journal of Medical Devices, 10(4): 041002, (2016).
  • [5] Zhang Y., Nolan K. J. and Zanotto D., “Oscillator-based transparent control of an active/semiactive ankle-foot orthosis”, IEEE Robotics and Automation Letters, 4(2): 247–253, (2018).
  • [6] Zhang Y., Kleinmann R. J., Nolan K. J., and Zanotto D., “Design and evaluation of an active/semiactive ankle-foot orthosis for gait training”, 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), 544–549, (2018).
  • [7] Aydin L. and Küçük S., “Design and construction of ankle foot orthosis by means of three dimensional printers”, Journal of Polytechnic-Politeknik Dergisi, 20(1): 1–8, (2017).
  • [8] Asadi Dereshgi H. and Demir D., “Numerical Analysis of a novel silicone sole-based passive orthosis for home gait rehabilitation training”, European Mechanical Science, 6(4): 251–256, (2022).
  • [9] Chen B., Wang R. and Zhou B., “A portable passive ankle-foot orthosis for walking propulsion and drop-foot prevention”, Journal of Medical Devices, 18(4): 041005, (2024).
  • [10] Zhou C., Yang Z., Li K. and Ye X., “Research and development of ankle–foot orthoses: A Review”, Sensors, 22(17): 6596, (2022).
  • [11] Sarma T., Saxena K. K., Majhi V., Pandey D., Tewari R. P. and Sahai N., “Development of active ankle foot orthotic device”, Materials Today: Proceedings, 26: 918–921, (2020).
  • [12] Asadi Dereshgi H., Dal H., Demir D. and Türe N. F., “Orthoses: A Systematic Review”, Journal of Smart Systems Research, 2(2): 135–149, (2021).
  • [13] Chen B., Zi B., Zeng Y., Qin L. and Liao W. H., “Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges”, Mechatronics, 53: 241–250, (2018).
  • [14] Lora-Millan J. S., Nabipour M., van Asseldonk E. and Bayón C., “Advances on mechanical designs for assistive ankle-foot orthoses”, Frontiers in bioengineering and biotechnology, 11: 1188685, (2023).
  • [15] Daryabor A., Arazpour M. and Aminian G., “Effect of different designs of ankle-foot orthoses on gait in patients with stroke: A systematic review”, Gait & posture, 62: 268–279, (2018).
  • [16] Adiputra D., Nazmi N., Bahiuddin I., Ubaidillah U., Imaduddin F., Abdul Rahman M. A., Mazlan S. A. and Zamzuri H., “A review on the control of the mechanical properties of ankle foot orthosis for gait assistance”, Actuators, 8(1): 10, (2019).
  • [17] Burdett R. G., Borello-France D., Blatchly C. and Potter C., “Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace”, Physical Therapy, 68: 1197–1203, (1988).
  • [18] Chen C. L., Yeung K. T., Wang C. H., Chu H. T. and Yeh C. Y., “Anterior ankle-foot orthosis effects on postural stability in hemiplegic patients”, Archives of Physical Medicine and Rehabilitation, 80(12): 1587–1592, (1999).
  • [19] Hesse S., Werner C., Matthias K., Stephen K. and Berteanu M., “Non-velocity-related effects of a rigid double-stopped ankle-foot orthosis on gait and lower limb muscle activity of hemiparetic subjects with an equinovarus deformity”, Stroke, 30: 1855–1861, (1999).
  • [20] de Wit D. C., Buurke J. H., Nijlant J. M., Ijzerman M. J. and Hermens H. J., “The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: A randomized controlled trial”, Clinical rehabilitation, 18(5): 550–557, (2004).
  • [21] Wang R. Y., Yen L. L., Lee C. C., Lin P. Y., Wang M. F. and Yang Y. R., “Effects of an ankle-foot orthosis on balance performance in patients with hemiparesis of different durations”, Clinical rehabilitation, 19(1): 37–44, (2005).
  • [22] Abe H., Michimata A., Sugawara K., Sugaya N. and Izumi S. I., “Improving gait stability in stroke hemiplegic patients with a plastic ankle-foot orthosis”, The Tohoku Journal of Experimental Medicine, 218(3): 193–199, (2009).
  • [23] Simons C. D. M., van Asseldonk E. H. F., van Kooij H., Geurts A. C. H. and Buurke J. H., “Ankle-foot orthoses in stroke: Effects on functional balance, weight-bearing asymmetry and the contribution of each lower limb to balance control”, Clinical Biomechanics, 24(9): 769–775, (2009).
  • [24] Gatti M. A., Freixes O., Fernández S. A., Rivas M. E., Crespo M., Waldman S. V. and Olmos L. E., “Effects of ankle foot orthosis in stiff knee gait in adults with hemiplegia”, Journal of Biomechanics, 45(15): 2658–2661, (2012).
  • [25] Zollo L., Zaccheddu N., Ciancio A. L., Morrone M., Bravi M., Santacaterina F., Milazzo M. L., Guglielmelli E. and Sterzi S., “Comparative analysis and quantitative evaluation of ankle-foot orthoses for foot drop in chronic hemiparetic patients”, European Journal of Physical and Rehabilitation Medicine, 51(2): 185–196, (2015).
  • [26] Farmani F., Mohseni-Bandpei M. A., Bahramizadeh M., Aminian G., Abdoli A. and Sadeghi-Goghari M., “The influence of rocker bar ankle foot orthosis on gait in patients with chronic hemiplegia”, Journal of Stroke and Cerebrovascular Diseases, 25(8): 2078–2082, (2016).
  • [27] Ladlow P., Bennett N., Phillip R., Dharm-Datta S., McMenemy L. and Bennett A. N., “Passive-dynamic ankle-foot orthosis improves medium-term clinical outcomes after severe lower extremity trauma”, BMJ Military Health, 165(5): 330–337, (2019).
  • [28] Surmen H. K. and Arslan Y. Z., “Evaluation of various design concepts in passive ankle-foot orthoses using finite element analysis”, Engineering Science and Technology, an International Journal, 24(6): 1301–1307, (2021).
  • [29] Feng J., Weiss J., Thompson A. and Meeker J. E., “Passive Dynamic Ankle Foot Orthoses Use in Civilian Patients with Arthritic Conditions of the Foot and Ankle”, Foot & Ankle Orthopaedics, 8(1): 1–9, (2023).
  • [30] www.isbweb.org, “Standards documents”, (2024).
  • [31] www.aapt.org, “Tracker video analysis and Modeling Tool”, (2024).
  • [32] Asadi Dereshgi H., “The rest-pause biceps curl exercise effect on biceps brachii muscle of women: A study of mechanical responsiveness”, IEEE Access, 11: 116967 – 116978, (2023).
  • [33] Del Bianco J. and Fatone S., “Comparison of silicone and posterior leaf spring ankle-foot orthoses in a subject with Charcot-Marie-Tooth disorder”, JPO: Journal of Prosthetics and Orthotics, 20(4): 155–162, (2008).
  • [34] Chhikara K., Gupta S. and Chanda A., “Development of a novel foot orthosis for plantar pain reduction”, Materials Today: Proceedings, 62: 3532–3537, (2022).
  • [35] Zuñiga J., Moscoso M., Padilla-Huamantinco P. G., Lazo-Porras M., Tenorio-Mucha J., Padilla-Huamantinco W. and Tincopa J. P., “Development of 3D-printed orthopedic insoles for patients with diabetes and evaluation with electronic pressure sensors”, Designs, 6(5): 95, (2022).

Pasif Ayak-Bilek Ortezinde Malzeme Özellikleri ve Biyomekanik Performansın Karşılaştırmalı Analizi

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1586101

Abstract

Pasif ayak-bilek ortezleri (AFO'ları), eklemlerin stabilizasyonunu sağlamakta ve gereksiz hareketi sınırlayarak biyomekanik yürüme analizinde temel bir unsur olarak hizmet ederler. Bu çalışma, termoplastik poliüretan (TPU), yüksek darbe polistiren (HIPS) ve polilaktik asit (PLA) malzemeleri ile silikon taban kullanarak üç farklı pasif AFO'yu yenilikçi bir şekilde geliştirmiş, bu ortezlerin mekanik özelliklerini ve fonksiyonel performanslarını iyileştirdiğini belirtmiştir. Malzemeler, Alan Emisyonlu Taramalı Elektron Mikroskobu (FE-SEM), çekme testi, sonlu elemanlar analizi (FEA) ve yürüyüş analizi kullanılarak analiz edilmiştir. Özellikle, FE-SEM, malzemelerin mikro yapısal tutarlılığını doğrulayan ve yüzey pürüzlülüğünü mikrometre ölçeğinde (<50 μm) ortaya koyan bir sonuç elde etmiştir. PLA tabanlı AFO, HIPS ve TPU varyantlarına kıyasla çekme testlerinde sırasıyla ~%73,43 ve ~%98,93 daha yüksek dayanım sergileyerek üstün performans göstermiştir. Ayrıca, FEA sonuçlarına göre PLA, HIPS’e göre %16,04, TPU’ya göre ise %99,25 daha düşük yer değiştirme gerçekleştirmiştir. Bunun yanı sıra, yürüme analizleri, AFO'suz duruma kıyasla TPU tabanlı AFO için %24,14, HIPS tabanlı AFO için %40,38 ve PLA tabanlı AFO için %52,39 oranında ayak bileği açısal yer değiştirmesinde azalma olduğunu ortaya koymuş ve PLA tabanlı AFO, eklem stabilizasyonundaki en belirgin iyileşmeyi sağlamıştır. Sonuç olarak, bu çalışma pasif AFO tasarımında önemli bir gelişme ortaya koymuş, PLA'nın eklem stabilitesindeki üstün performansını vurgulamış ve gelecekteki ortez tasarımlarına zemin hazırlamıştır.

Project Number

2022-ST-002

References

  • [1] Wu F., Meng Z., Yang K. and Li J., “Effects of ankle–foot orthoses on gait parameters in post-stroke patients with different brunnstrom stages of the lower limb: A single-center crossover trial”, European Journal of Medical Research, 29(1): 235, (2024).
  • [2] Marconi G. P., Gopalai A. A. and Chauhan S., “A hybrid ankle-foot orthosis with soft pneumatic actuation”, Mechatronics, 99: 103171, (2024).
  • [3] Bai Y., Gao X., Zhao J., Jin F., Dai F. and Lv Y., “A portable ankle-foot rehabilitation orthosis powered by electric motor”, The Open Mechanical Engineering Journal, 9(1): 982–991, (2015).
  • [4] Neubauer B. and Durfee W., “Preliminary design and engineering evaluation of a hydraulic ankle–foot orthosis”, Journal of Medical Devices, 10(4): 041002, (2016).
  • [5] Zhang Y., Nolan K. J. and Zanotto D., “Oscillator-based transparent control of an active/semiactive ankle-foot orthosis”, IEEE Robotics and Automation Letters, 4(2): 247–253, (2018).
  • [6] Zhang Y., Kleinmann R. J., Nolan K. J., and Zanotto D., “Design and evaluation of an active/semiactive ankle-foot orthosis for gait training”, 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), 544–549, (2018).
  • [7] Aydin L. and Küçük S., “Design and construction of ankle foot orthosis by means of three dimensional printers”, Journal of Polytechnic-Politeknik Dergisi, 20(1): 1–8, (2017).
  • [8] Asadi Dereshgi H. and Demir D., “Numerical Analysis of a novel silicone sole-based passive orthosis for home gait rehabilitation training”, European Mechanical Science, 6(4): 251–256, (2022).
  • [9] Chen B., Wang R. and Zhou B., “A portable passive ankle-foot orthosis for walking propulsion and drop-foot prevention”, Journal of Medical Devices, 18(4): 041005, (2024).
  • [10] Zhou C., Yang Z., Li K. and Ye X., “Research and development of ankle–foot orthoses: A Review”, Sensors, 22(17): 6596, (2022).
  • [11] Sarma T., Saxena K. K., Majhi V., Pandey D., Tewari R. P. and Sahai N., “Development of active ankle foot orthotic device”, Materials Today: Proceedings, 26: 918–921, (2020).
  • [12] Asadi Dereshgi H., Dal H., Demir D. and Türe N. F., “Orthoses: A Systematic Review”, Journal of Smart Systems Research, 2(2): 135–149, (2021).
  • [13] Chen B., Zi B., Zeng Y., Qin L. and Liao W. H., “Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges”, Mechatronics, 53: 241–250, (2018).
  • [14] Lora-Millan J. S., Nabipour M., van Asseldonk E. and Bayón C., “Advances on mechanical designs for assistive ankle-foot orthoses”, Frontiers in bioengineering and biotechnology, 11: 1188685, (2023).
  • [15] Daryabor A., Arazpour M. and Aminian G., “Effect of different designs of ankle-foot orthoses on gait in patients with stroke: A systematic review”, Gait & posture, 62: 268–279, (2018).
  • [16] Adiputra D., Nazmi N., Bahiuddin I., Ubaidillah U., Imaduddin F., Abdul Rahman M. A., Mazlan S. A. and Zamzuri H., “A review on the control of the mechanical properties of ankle foot orthosis for gait assistance”, Actuators, 8(1): 10, (2019).
  • [17] Burdett R. G., Borello-France D., Blatchly C. and Potter C., “Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace”, Physical Therapy, 68: 1197–1203, (1988).
  • [18] Chen C. L., Yeung K. T., Wang C. H., Chu H. T. and Yeh C. Y., “Anterior ankle-foot orthosis effects on postural stability in hemiplegic patients”, Archives of Physical Medicine and Rehabilitation, 80(12): 1587–1592, (1999).
  • [19] Hesse S., Werner C., Matthias K., Stephen K. and Berteanu M., “Non-velocity-related effects of a rigid double-stopped ankle-foot orthosis on gait and lower limb muscle activity of hemiparetic subjects with an equinovarus deformity”, Stroke, 30: 1855–1861, (1999).
  • [20] de Wit D. C., Buurke J. H., Nijlant J. M., Ijzerman M. J. and Hermens H. J., “The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: A randomized controlled trial”, Clinical rehabilitation, 18(5): 550–557, (2004).
  • [21] Wang R. Y., Yen L. L., Lee C. C., Lin P. Y., Wang M. F. and Yang Y. R., “Effects of an ankle-foot orthosis on balance performance in patients with hemiparesis of different durations”, Clinical rehabilitation, 19(1): 37–44, (2005).
  • [22] Abe H., Michimata A., Sugawara K., Sugaya N. and Izumi S. I., “Improving gait stability in stroke hemiplegic patients with a plastic ankle-foot orthosis”, The Tohoku Journal of Experimental Medicine, 218(3): 193–199, (2009).
  • [23] Simons C. D. M., van Asseldonk E. H. F., van Kooij H., Geurts A. C. H. and Buurke J. H., “Ankle-foot orthoses in stroke: Effects on functional balance, weight-bearing asymmetry and the contribution of each lower limb to balance control”, Clinical Biomechanics, 24(9): 769–775, (2009).
  • [24] Gatti M. A., Freixes O., Fernández S. A., Rivas M. E., Crespo M., Waldman S. V. and Olmos L. E., “Effects of ankle foot orthosis in stiff knee gait in adults with hemiplegia”, Journal of Biomechanics, 45(15): 2658–2661, (2012).
  • [25] Zollo L., Zaccheddu N., Ciancio A. L., Morrone M., Bravi M., Santacaterina F., Milazzo M. L., Guglielmelli E. and Sterzi S., “Comparative analysis and quantitative evaluation of ankle-foot orthoses for foot drop in chronic hemiparetic patients”, European Journal of Physical and Rehabilitation Medicine, 51(2): 185–196, (2015).
  • [26] Farmani F., Mohseni-Bandpei M. A., Bahramizadeh M., Aminian G., Abdoli A. and Sadeghi-Goghari M., “The influence of rocker bar ankle foot orthosis on gait in patients with chronic hemiplegia”, Journal of Stroke and Cerebrovascular Diseases, 25(8): 2078–2082, (2016).
  • [27] Ladlow P., Bennett N., Phillip R., Dharm-Datta S., McMenemy L. and Bennett A. N., “Passive-dynamic ankle-foot orthosis improves medium-term clinical outcomes after severe lower extremity trauma”, BMJ Military Health, 165(5): 330–337, (2019).
  • [28] Surmen H. K. and Arslan Y. Z., “Evaluation of various design concepts in passive ankle-foot orthoses using finite element analysis”, Engineering Science and Technology, an International Journal, 24(6): 1301–1307, (2021).
  • [29] Feng J., Weiss J., Thompson A. and Meeker J. E., “Passive Dynamic Ankle Foot Orthoses Use in Civilian Patients with Arthritic Conditions of the Foot and Ankle”, Foot & Ankle Orthopaedics, 8(1): 1–9, (2023).
  • [30] www.isbweb.org, “Standards documents”, (2024).
  • [31] www.aapt.org, “Tracker video analysis and Modeling Tool”, (2024).
  • [32] Asadi Dereshgi H., “The rest-pause biceps curl exercise effect on biceps brachii muscle of women: A study of mechanical responsiveness”, IEEE Access, 11: 116967 – 116978, (2023).
  • [33] Del Bianco J. and Fatone S., “Comparison of silicone and posterior leaf spring ankle-foot orthoses in a subject with Charcot-Marie-Tooth disorder”, JPO: Journal of Prosthetics and Orthotics, 20(4): 155–162, (2008).
  • [34] Chhikara K., Gupta S. and Chanda A., “Development of a novel foot orthosis for plantar pain reduction”, Materials Today: Proceedings, 62: 3532–3537, (2022).
  • [35] Zuñiga J., Moscoso M., Padilla-Huamantinco P. G., Lazo-Porras M., Tenorio-Mucha J., Padilla-Huamantinco W. and Tincopa J. P., “Development of 3D-printed orthopedic insoles for patients with diabetes and evaluation with electronic pressure sensors”, Designs, 6(5): 95, (2022).
There are 35 citations in total.

Details

Primary Language English
Subjects Biomechanic
Journal Section Research Article
Authors

Hamid Asadi Dereshgi 0000-0002-8500-6625

Dilan Demir 0000-0001-7413-1597

Project Number 2022-ST-002
Early Pub Date December 30, 2024
Publication Date
Submission Date November 15, 2024
Acceptance Date December 24, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Asadi Dereshgi, H., & Demir, D. (2024). Comparative Analysis of Material Characteristics and Biomechanical Performance in Passive Ankle-Foot Orthoses. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1586101
AMA Asadi Dereshgi H, Demir D. Comparative Analysis of Material Characteristics and Biomechanical Performance in Passive Ankle-Foot Orthoses. Politeknik Dergisi. Published online December 1, 2024:1-1. doi:10.2339/politeknik.1586101
Chicago Asadi Dereshgi, Hamid, and Dilan Demir. “Comparative Analysis of Material Characteristics and Biomechanical Performance in Passive Ankle-Foot Orthoses”. Politeknik Dergisi, December (December 2024), 1-1. https://doi.org/10.2339/politeknik.1586101.
EndNote Asadi Dereshgi H, Demir D (December 1, 2024) Comparative Analysis of Material Characteristics and Biomechanical Performance in Passive Ankle-Foot Orthoses. Politeknik Dergisi 1–1.
IEEE H. Asadi Dereshgi and D. Demir, “Comparative Analysis of Material Characteristics and Biomechanical Performance in Passive Ankle-Foot Orthoses”, Politeknik Dergisi, pp. 1–1, December 2024, doi: 10.2339/politeknik.1586101.
ISNAD Asadi Dereshgi, Hamid - Demir, Dilan. “Comparative Analysis of Material Characteristics and Biomechanical Performance in Passive Ankle-Foot Orthoses”. Politeknik Dergisi. December 2024. 1-1. https://doi.org/10.2339/politeknik.1586101.
JAMA Asadi Dereshgi H, Demir D. Comparative Analysis of Material Characteristics and Biomechanical Performance in Passive Ankle-Foot Orthoses. Politeknik Dergisi. 2024;:1–1.
MLA Asadi Dereshgi, Hamid and Dilan Demir. “Comparative Analysis of Material Characteristics and Biomechanical Performance in Passive Ankle-Foot Orthoses”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1586101.
Vancouver Asadi Dereshgi H, Demir D. Comparative Analysis of Material Characteristics and Biomechanical Performance in Passive Ankle-Foot Orthoses. Politeknik Dergisi. 2024:1-.