Research Article
BibTex RIS Cite

Optimizing A5356 Alloy Performance with WAAM: A Comprehensive Study

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1634054

Abstract

Wire Arc Additive Manufacturing (WAAM) technology is an attractive fabrication method for structural components due to significantly lower consumable usage and higher filler material addition rates than conventional fusion welding. The present study used 1.2 mm welding wire, WAAM CMT-MIG technique, three different wire feed speeds (WFS), and corresponding heat input levels to produce high layer thicknesses. Samples extracted from the fabricated walls were subjected to non-destructive testing methods, including visual inspection (VT), penetrant testing (PT), and ultrasonic testing (UT), as well as various mechanical and material characterization tests such as tensile, flexure, and notch impact tests, microhardness measurements, XRD analysis, and microstructural evaluations using optical microscopy, SEM, and EDS. The results revealed that bending strength and microhardness improved under low heat input conditions. Moreover, these findings indicate that the WAAM technique holds promise as a manufacturing method for A5356 samples when lower heat input is applied.

Supporting Institution

TÜBİTAK

Thanks

The authors would like to thank the TUBITAK 2209-B project support code 1139B412302655. Thank you for the opportunity to present our paper at the ICMATSE Hybrid Conference.

References

  • [1] Tekeli A. F. ve Seçkin B., “Tel Beslemeli Ark Eklemeli İmalat Yönteminde Soğuk Metal Transferi Teknolojisinin Kullanımı”, Mühendis ve Makine Dergisi, 44: 26-30, (2020).
  • [2] Ayan Y., “Farklı Malzeme Katmanlı Ürünlerin Tel Ark Eklemeli İmalatı”, Karabük University Institute of Graduate Studies, Ph.D. Thesis, 1-25, (2022).
  • [3] Çakır E. ve Ulutan M., “Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi”, Bilecik Şeyh Edebali University Fen Bilimleri Dergisi, 10: 217-235, (2023).
  • [4] Kayacan M. Y. ve Yılmaz N., “DMLS eklemeli imalatta süreç ve maliyet modeli geliştirilmesi”, Politeknik Dergisi, 22(3): 763-770, (2019).
  • [5] Karakılınç U., Yalçın B. ve Ergene B., “Toz yataklı/beslemeli eklemeli imalatta kullanılan partiküllerin uygunluk araştırması ve partikül imalat yöntemleri”, Politeknik Dergisi, 22(4): 801-810, (2019).
  • [6] Polat Çoban N., Anaç N. ve Mert F., “Eklemeli imalat ile üretilen PLA parçaların yapıştırılmasında yapıştırma parametrelerinin mekanik dayanımına etkisinin incelenmesi”, Politeknik Dergisi, 26(3): 1145-1154, (2023).
  • [7] Raut L. P. ve Taiwade R. V., “Wire Arc Additive Manufacturing: A Comprehensive Review and Research Directions”, Journal of Materials Engineering and Performance, 30: 4768-4791, (2021).
  • [8] Saleh B., Fathi R., Tian Y. ve diğerleri, “Fundamentals and advances of wire arc additive manufacturing: materials, process parameters, potential applications, and future trends”, Archives of Civil and Mechanical Engineering, 23: 96, (2023).
  • [9] Zhang Y., Wang L. ve Liu H., “Automated Determination of Grain Features for Wire Arc Additive Manufacturing Process”, Journal of Materials Engineering and Performance, 32(5): 1234-1245, (2023).
  • [10] Köhler M., Hensel J. ve Dilger K., “Effects of Thermal Cycling on Wire and Arc Additive Manufacturing of Al-5356 Components”, Metals, 10: 952-963, (2020).
  • [11] Özsoy K. ve Duman B., “Eklemeli İmalat (3 Boyutlu Baskı) Teknolojilerinin Eğitimde Kullanılabilirliği”, International Journal of 3D Printing Technologies and Digital Industry, 1: 36-48, (2017).
  • [12] Karayel E., Bozkurt Y., Özdemir C. ve Kalender M., “Investigation of Mechanical Properties of Aluminum Alloys Produced by Wire Arc Additive Manufacturing Method”, Marmara University Institute of Natural and Applied Sciences, Master’s Thesis, 3-67, (2022).
  • [13] Mercan E., Ayan Y. ve Kahraman N., “Gazaltı metal ark kaynak (GMAK) yöntemiyle birleştirilen AA5754 ve AA6013 alüminyum alaşımlarının mikro yapı ve mekanik özellikleri”, Pamukkale University Mühendislik Bilimleri Dergisi, 26: 82-87, (2020).
  • [14] Ayan D. ve Nizamettin K., “Metal Eklemeli İmalat: Tel Ark Yöntemi ve Uygulamaları”, International Journal of 3D Printing Technologies and Digital Industry, 2: 74-84, (2018).
  • [15] Özsolak O., “Eklemeli İmalat Yöntemleri ve Kullanılan Malzemeler”, International Journal of Innovative Engineering Applications, 3(1): 9-14, (2019).
  • [16] Evrensel R. ve Ertek C., “Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu”, Journal of the Institute of Science and Technology, 13: 2008-2025, (2023).
  • [17] Gierth M., Henckell P., Ali Y., Scholl J. ve Bergmann J. P., “Wire Arc Additive Manufacturing (WAAM) of Aluminum Alloy AlMg5Mn with Energy-Reduced Gas Metal Arc Welding (GMAW)”, Materials, 13: 2671-2693, (2020).
  • [18] Nagasai B. P., Malarvizhi S. ve Balasubramanian V., “Wire Arc Additive Manufacturing of 5356 Aluminum Alloy Cylindrical Component: Mechanical Properties and Microstructural Characteristics”, Weld Fab Tech Times, (2023).
  • [19] Wang J., Feng J. C. ve Wang Y. X., “Microstructure of Al–Mg dissimilar weld made by cold metal transfer MIG welding”, Materials Science and Technology, 24(7): 827-831, (2008).
  • [20] Sachin Kumar, Gurraj Singh, Vishal S. Sharma ve diğerleri, “Investigation of Process Parameters for Quality Deposition of AL5356 using Cold Metal Transfer Wire Arc Additive Manufacturing (CMT-WAAM)”, Research Square, Preprint, (2024).
  • [21] Wang J., Shen Q., Kong X. ve Chen X., “Arc Additively Manufactured 5356 Aluminum Alloy with Cable-Type Welding Wire: Microstructure and Mechanical Properties”, Journal of Materials Engineering and Performance, 1-7, (2021).
  • [22] Wang J., Zhu K., Zhang W., Zhu X. ve Lu X., “Microstructural and defect evolution during WAAM resulting in mechanical property differences for AA5356 component”, Journal of Materials Research and Technology, 22: 982-996, (2023).
  • [23] Jiangang P., Bo Y., Jinguo G., Yu R., Hongjun C., Liang Z. ve Hao L., “Influence of arc mode on the microstructure and mechanical properties of 5356 aluminum alloy fabricated by wire arc additive manufacturing”, Journal of Materials Research and Technology, 20: 1893-1907, (2022).
  • [24] Langelandsvik G., Akselsen O. M., Furu T. ve Roven H. J., “Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing”, Materials, 14: 5370, (2021).
  • [25] Li S., Zhang L. J., Ning J., Wang X., Zhang G. F., Zhang J. X., Na S. J. ve Fatemeh B., “Comparative study on the microstructures and properties of wire+ arc additively manufactured 5356 aluminum alloy with argon and nitrogen as the shielding gas”, Additive Manufacturing, 34: 101206, (2020).
  • [26] Li S., Zhang L. J., Ning J., Wang X., Zhang G. F., Zhang J. X. ve Na S. J., “Microstructures and mechanical properties of Al–Zn–Mg aluminum alloy samples produced by wire+ arc additive manufacturing”, Journal of Materials Research and Technology, 9: 13770-13780, (2020).
  • [27] Koduru J. P., Kumar T. V. ve Mantrala K. M., “A review of wire and arc additive manufacturing using different property characterization, challenges and future trends”, International Journal of System Assurance Engineering and Management, 15: 4563-4581, (2024).
  • [28] Zahid M., Hai K., Khan M., Shekha A., Pervaiz S., Moneeb Ali S., Abdul-Latif O. ve Salman M., “Wire Arc Additive Manufacturing (WAAM): Reviewing Technology, Mechanical Properties, Applications and Challenges”, ASME International Mechanical Engineering Congress and Exposition, Proceedings, 2A: V02AT02A042, (2020).
  • [29] Wieczorowski M., Pereira A., Carou D., Gapinski B. ve Ramírez I., “Characterization of 5356 Aluminum Walls Produced by Wire Arc Additive Manufacturing (WAAM)”, Materials, 16(7): 2570, (2023).
  • [30] GEKA - Gedik Kaynak, “AlMg 5 [Technical data sheet]”, www.gedikkaynak.com.tr, (t.y.).
  • [31] Karimi J., Bohlen A., Kamboj N. ve diğerleri, “Automated Determination of Grain Features for Wire Arc Additive Manufacturing”, Journal of Materials Engineering and Performance, 32: 10402-10411, (2023).
  • [32] Kayadelen A., Ateş H. ve Yılmaz O., “Wire Arc Additive Manufacturing (Metal Inert Gas-Cold Metal Transfer) of ER70S-6: Experimental and Computational Analysis on Process, Microstructure, and Mechanical Property Relationships”, Journal of Materials Engineering and Performance, (2025).
  • [33] Goldstein J., Newbury D., Joy D., Lyman C., Echlin P., Lifshin E., Sawyer L. ve Michael J., “Scanning Electron Microscopy and X-Ray Microanalysis”, Springer, (2018).
  • [34] Zuo X., Lv Z., Wang Y., Chen X. ve Qi W., “Microstructural Organization and Mechanical Properties of 5356 Aluminum Alloy Wire Arc Additive Manufacturing Under Low Heat Input Conditions”, Metals, 15(2): 116, (2025).
  • [35] Li J., Wang X. ve Zhao Y., “Wire and Arc Additive Manufacturing of High-Strength Al–Zn–Mg Alloy: Microstructure and Mechanical Properties”, Frontiers in Materials, 7: 656429, (2020).
  • [36] Köhler M., Fiebig S., Hensel J. ve Dilger K., “Wire and Arc Additive Manufacturing of Aluminum Components”, Metals, 9(5): 608, (2019).
  • [37] Sharma S. K., Chandra M., Kazmi K. H. ve diğerleri, “Surface Characteristics, Microstructural, and Tribological Behavior of Wire Arc Additive Manufactured Aluminum-5356 Alloy”, Journal of Materials Engineering and Performance, (2024).
  • [38] Liu J., Chen H., Li W. ve diğerleri, “Investigation on the microstructure and mechanical properties of 5356 aluminum alloy wire in continuous casting direct rolling process”, Journal of Materials Science, 59: 20428-20444, (2024).
  • [39] Girgsdies F., “Peak Profile Fitting in XRD”, Electron Microscopy Group, Department of Inorganic Chemistry, Fritz-Haber-Institut der MPG, Berlin, (2015).
  • [40] EN ISO 23277, “Non-destructive testing of welds - Penetrant testing of welds - Acceptance Levels”, ISO, (2015).
  • [41] EN ISO 11666-1, “Non-destructive testing of welds - Ultrasonic testing - Acceptance levels”, ISO, (2015).
  • [42] Wahsh L., Azzam M., Turky M., Salem H., Hamdy F., Mansour A. ve ElShater A., “Parameter Selection for Wire Arc Additive Manufacturing (WAAM) Process”, (2018).
  • [43] Chen F., Yang Y. H. ve Feng H., “Regional Control and Optimization of Heat Input during CMT by Wire Arc Additive Manufacturing: Modeling and Microstructure Effects”, Materials, 14: 1061, (2021).

WAAM ile A5356 Alaşım Performansının Optimize Edilmesi: Kapsamlı Bir Çalışma

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1634054

Abstract

Tel Ark Eklemeli Üretim (WAAM) teknolojisi, geleneksel eritme kaynağına kıyasla önemli ölçüde daha düşük sarf kullanımı ve daha yüksek biriktirme oranları nedeniyle yapısal bileşenler için cazip bir üretim yöntemidir. Bu çalışmada, 1,2 mm kaynak teli, WAAM CMT-MIG (Soğuk Metal Transferi - Metal Soy Gaz) yöntemi kullanılarak üç farklı tel besleme hızı (WFS) ve üç farklı ısı girdisi değeri ile yüksek katman kalınlıklarında üretimler yapılmıştır. Üretilen duvarlardan elde edilen numuneler üzerinde görsel muayene (VT), penetrant testi (PT) ve ultrasonik muayene (UT) gibi tahribatsız muayene yöntemleri ve çekme testi, eğme testi, çentik darbe testi, mikrosertlik, XRD, mikroyapı analizleri (optik mikroskop, SEM ve EDS) dahil olmak üzere çeşitli testler gerçekleştirilmiştir. Sonuçlar analiz edilmiş ve düşük ısı girdisinde eğilme mukavemeti ve mikrosertliğin arttığı ortaya çıkmıştır. Ayrıca, bu sonuçlar WAAM yönteminin daha düşük ısı girdisi ile A5356 numuneler için bir üretim yöntemi olarak umut vaat ettiğini göstermektedir.

Supporting Institution

TÜBİTAK

Thanks

Yazarlar, 1139B412302655 kodlu TÜBİTAK 2209-B projesinin desteğine teşekkür eder. ICMATSE Hybrid Konferans'ına makalemizi sunma fırsatı verdikleri için teşekkür ederiz.

References

  • [1] Tekeli A. F. ve Seçkin B., “Tel Beslemeli Ark Eklemeli İmalat Yönteminde Soğuk Metal Transferi Teknolojisinin Kullanımı”, Mühendis ve Makine Dergisi, 44: 26-30, (2020).
  • [2] Ayan Y., “Farklı Malzeme Katmanlı Ürünlerin Tel Ark Eklemeli İmalatı”, Karabük University Institute of Graduate Studies, Ph.D. Thesis, 1-25, (2022).
  • [3] Çakır E. ve Ulutan M., “Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi”, Bilecik Şeyh Edebali University Fen Bilimleri Dergisi, 10: 217-235, (2023).
  • [4] Kayacan M. Y. ve Yılmaz N., “DMLS eklemeli imalatta süreç ve maliyet modeli geliştirilmesi”, Politeknik Dergisi, 22(3): 763-770, (2019).
  • [5] Karakılınç U., Yalçın B. ve Ergene B., “Toz yataklı/beslemeli eklemeli imalatta kullanılan partiküllerin uygunluk araştırması ve partikül imalat yöntemleri”, Politeknik Dergisi, 22(4): 801-810, (2019).
  • [6] Polat Çoban N., Anaç N. ve Mert F., “Eklemeli imalat ile üretilen PLA parçaların yapıştırılmasında yapıştırma parametrelerinin mekanik dayanımına etkisinin incelenmesi”, Politeknik Dergisi, 26(3): 1145-1154, (2023).
  • [7] Raut L. P. ve Taiwade R. V., “Wire Arc Additive Manufacturing: A Comprehensive Review and Research Directions”, Journal of Materials Engineering and Performance, 30: 4768-4791, (2021).
  • [8] Saleh B., Fathi R., Tian Y. ve diğerleri, “Fundamentals and advances of wire arc additive manufacturing: materials, process parameters, potential applications, and future trends”, Archives of Civil and Mechanical Engineering, 23: 96, (2023).
  • [9] Zhang Y., Wang L. ve Liu H., “Automated Determination of Grain Features for Wire Arc Additive Manufacturing Process”, Journal of Materials Engineering and Performance, 32(5): 1234-1245, (2023).
  • [10] Köhler M., Hensel J. ve Dilger K., “Effects of Thermal Cycling on Wire and Arc Additive Manufacturing of Al-5356 Components”, Metals, 10: 952-963, (2020).
  • [11] Özsoy K. ve Duman B., “Eklemeli İmalat (3 Boyutlu Baskı) Teknolojilerinin Eğitimde Kullanılabilirliği”, International Journal of 3D Printing Technologies and Digital Industry, 1: 36-48, (2017).
  • [12] Karayel E., Bozkurt Y., Özdemir C. ve Kalender M., “Investigation of Mechanical Properties of Aluminum Alloys Produced by Wire Arc Additive Manufacturing Method”, Marmara University Institute of Natural and Applied Sciences, Master’s Thesis, 3-67, (2022).
  • [13] Mercan E., Ayan Y. ve Kahraman N., “Gazaltı metal ark kaynak (GMAK) yöntemiyle birleştirilen AA5754 ve AA6013 alüminyum alaşımlarının mikro yapı ve mekanik özellikleri”, Pamukkale University Mühendislik Bilimleri Dergisi, 26: 82-87, (2020).
  • [14] Ayan D. ve Nizamettin K., “Metal Eklemeli İmalat: Tel Ark Yöntemi ve Uygulamaları”, International Journal of 3D Printing Technologies and Digital Industry, 2: 74-84, (2018).
  • [15] Özsolak O., “Eklemeli İmalat Yöntemleri ve Kullanılan Malzemeler”, International Journal of Innovative Engineering Applications, 3(1): 9-14, (2019).
  • [16] Evrensel R. ve Ertek C., “Eklemeli İmalatta Alüminyum ve Alüminyum Alaşımlarının Uygulamaları ve Topoloji Optimizasyonu”, Journal of the Institute of Science and Technology, 13: 2008-2025, (2023).
  • [17] Gierth M., Henckell P., Ali Y., Scholl J. ve Bergmann J. P., “Wire Arc Additive Manufacturing (WAAM) of Aluminum Alloy AlMg5Mn with Energy-Reduced Gas Metal Arc Welding (GMAW)”, Materials, 13: 2671-2693, (2020).
  • [18] Nagasai B. P., Malarvizhi S. ve Balasubramanian V., “Wire Arc Additive Manufacturing of 5356 Aluminum Alloy Cylindrical Component: Mechanical Properties and Microstructural Characteristics”, Weld Fab Tech Times, (2023).
  • [19] Wang J., Feng J. C. ve Wang Y. X., “Microstructure of Al–Mg dissimilar weld made by cold metal transfer MIG welding”, Materials Science and Technology, 24(7): 827-831, (2008).
  • [20] Sachin Kumar, Gurraj Singh, Vishal S. Sharma ve diğerleri, “Investigation of Process Parameters for Quality Deposition of AL5356 using Cold Metal Transfer Wire Arc Additive Manufacturing (CMT-WAAM)”, Research Square, Preprint, (2024).
  • [21] Wang J., Shen Q., Kong X. ve Chen X., “Arc Additively Manufactured 5356 Aluminum Alloy with Cable-Type Welding Wire: Microstructure and Mechanical Properties”, Journal of Materials Engineering and Performance, 1-7, (2021).
  • [22] Wang J., Zhu K., Zhang W., Zhu X. ve Lu X., “Microstructural and defect evolution during WAAM resulting in mechanical property differences for AA5356 component”, Journal of Materials Research and Technology, 22: 982-996, (2023).
  • [23] Jiangang P., Bo Y., Jinguo G., Yu R., Hongjun C., Liang Z. ve Hao L., “Influence of arc mode on the microstructure and mechanical properties of 5356 aluminum alloy fabricated by wire arc additive manufacturing”, Journal of Materials Research and Technology, 20: 1893-1907, (2022).
  • [24] Langelandsvik G., Akselsen O. M., Furu T. ve Roven H. J., “Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing”, Materials, 14: 5370, (2021).
  • [25] Li S., Zhang L. J., Ning J., Wang X., Zhang G. F., Zhang J. X., Na S. J. ve Fatemeh B., “Comparative study on the microstructures and properties of wire+ arc additively manufactured 5356 aluminum alloy with argon and nitrogen as the shielding gas”, Additive Manufacturing, 34: 101206, (2020).
  • [26] Li S., Zhang L. J., Ning J., Wang X., Zhang G. F., Zhang J. X. ve Na S. J., “Microstructures and mechanical properties of Al–Zn–Mg aluminum alloy samples produced by wire+ arc additive manufacturing”, Journal of Materials Research and Technology, 9: 13770-13780, (2020).
  • [27] Koduru J. P., Kumar T. V. ve Mantrala K. M., “A review of wire and arc additive manufacturing using different property characterization, challenges and future trends”, International Journal of System Assurance Engineering and Management, 15: 4563-4581, (2024).
  • [28] Zahid M., Hai K., Khan M., Shekha A., Pervaiz S., Moneeb Ali S., Abdul-Latif O. ve Salman M., “Wire Arc Additive Manufacturing (WAAM): Reviewing Technology, Mechanical Properties, Applications and Challenges”, ASME International Mechanical Engineering Congress and Exposition, Proceedings, 2A: V02AT02A042, (2020).
  • [29] Wieczorowski M., Pereira A., Carou D., Gapinski B. ve Ramírez I., “Characterization of 5356 Aluminum Walls Produced by Wire Arc Additive Manufacturing (WAAM)”, Materials, 16(7): 2570, (2023).
  • [30] GEKA - Gedik Kaynak, “AlMg 5 [Technical data sheet]”, www.gedikkaynak.com.tr, (t.y.).
  • [31] Karimi J., Bohlen A., Kamboj N. ve diğerleri, “Automated Determination of Grain Features for Wire Arc Additive Manufacturing”, Journal of Materials Engineering and Performance, 32: 10402-10411, (2023).
  • [32] Kayadelen A., Ateş H. ve Yılmaz O., “Wire Arc Additive Manufacturing (Metal Inert Gas-Cold Metal Transfer) of ER70S-6: Experimental and Computational Analysis on Process, Microstructure, and Mechanical Property Relationships”, Journal of Materials Engineering and Performance, (2025).
  • [33] Goldstein J., Newbury D., Joy D., Lyman C., Echlin P., Lifshin E., Sawyer L. ve Michael J., “Scanning Electron Microscopy and X-Ray Microanalysis”, Springer, (2018).
  • [34] Zuo X., Lv Z., Wang Y., Chen X. ve Qi W., “Microstructural Organization and Mechanical Properties of 5356 Aluminum Alloy Wire Arc Additive Manufacturing Under Low Heat Input Conditions”, Metals, 15(2): 116, (2025).
  • [35] Li J., Wang X. ve Zhao Y., “Wire and Arc Additive Manufacturing of High-Strength Al–Zn–Mg Alloy: Microstructure and Mechanical Properties”, Frontiers in Materials, 7: 656429, (2020).
  • [36] Köhler M., Fiebig S., Hensel J. ve Dilger K., “Wire and Arc Additive Manufacturing of Aluminum Components”, Metals, 9(5): 608, (2019).
  • [37] Sharma S. K., Chandra M., Kazmi K. H. ve diğerleri, “Surface Characteristics, Microstructural, and Tribological Behavior of Wire Arc Additive Manufactured Aluminum-5356 Alloy”, Journal of Materials Engineering and Performance, (2024).
  • [38] Liu J., Chen H., Li W. ve diğerleri, “Investigation on the microstructure and mechanical properties of 5356 aluminum alloy wire in continuous casting direct rolling process”, Journal of Materials Science, 59: 20428-20444, (2024).
  • [39] Girgsdies F., “Peak Profile Fitting in XRD”, Electron Microscopy Group, Department of Inorganic Chemistry, Fritz-Haber-Institut der MPG, Berlin, (2015).
  • [40] EN ISO 23277, “Non-destructive testing of welds - Penetrant testing of welds - Acceptance Levels”, ISO, (2015).
  • [41] EN ISO 11666-1, “Non-destructive testing of welds - Ultrasonic testing - Acceptance levels”, ISO, (2015).
  • [42] Wahsh L., Azzam M., Turky M., Salem H., Hamdy F., Mansour A. ve ElShater A., “Parameter Selection for Wire Arc Additive Manufacturing (WAAM) Process”, (2018).
  • [43] Chen F., Yang Y. H. ve Feng H., “Regional Control and Optimization of Heat Input during CMT by Wire Arc Additive Manufacturing: Modeling and Microstructure Effects”, Materials, 14: 1061, (2021).
There are 43 citations in total.

Details

Primary Language English
Subjects Material Production Technologies, Metals and Alloy Materials, Materials Engineering (Other)
Journal Section Research Article
Authors

Berfin Gürsu 0009-0005-7894-8672

Merve Sude Kayış 0009-0007-0919-1260

Hakan Ateş 0000-0002-5132-4107

Murat Kayaalp 0009-0001-3655-1619

Early Pub Date October 12, 2025
Publication Date November 17, 2025
Submission Date February 6, 2025
Acceptance Date August 20, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Gürsu, B., Kayış, M. S., Ateş, H., Kayaalp, M. (2025). Optimizing A5356 Alloy Performance with WAAM: A Comprehensive Study. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1634054
AMA Gürsu B, Kayış MS, Ateş H, Kayaalp M. Optimizing A5356 Alloy Performance with WAAM: A Comprehensive Study. Politeknik Dergisi. Published online October 1, 2025:1-1. doi:10.2339/politeknik.1634054
Chicago Gürsu, Berfin, Merve Sude Kayış, Hakan Ateş, and Murat Kayaalp. “Optimizing A5356 Alloy Performance With WAAM: A Comprehensive Study”. Politeknik Dergisi, October (October 2025), 1-1. https://doi.org/10.2339/politeknik.1634054.
EndNote Gürsu B, Kayış MS, Ateş H, Kayaalp M (October 1, 2025) Optimizing A5356 Alloy Performance with WAAM: A Comprehensive Study. Politeknik Dergisi 1–1.
IEEE B. Gürsu, M. S. Kayış, H. Ateş, and M. Kayaalp, “Optimizing A5356 Alloy Performance with WAAM: A Comprehensive Study”, Politeknik Dergisi, pp. 1–1, October2025, doi: 10.2339/politeknik.1634054.
ISNAD Gürsu, Berfin et al. “Optimizing A5356 Alloy Performance With WAAM: A Comprehensive Study”. Politeknik Dergisi. October2025. 1-1. https://doi.org/10.2339/politeknik.1634054.
JAMA Gürsu B, Kayış MS, Ateş H, Kayaalp M. Optimizing A5356 Alloy Performance with WAAM: A Comprehensive Study. Politeknik Dergisi. 2025;:1–1.
MLA Gürsu, Berfin et al. “Optimizing A5356 Alloy Performance With WAAM: A Comprehensive Study”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1634054.
Vancouver Gürsu B, Kayış MS, Ateş H, Kayaalp M. Optimizing A5356 Alloy Performance with WAAM: A Comprehensive Study. Politeknik Dergisi. 2025:1-.