Research Article
BibTex RIS Cite

Farklı Kürleme Teknolojileri Kullanılarak Üretilen Cam Elyaf Takviyeli Kompozitlerin Mekanik Özelliklerinin, Tüketilen Enerjinin ve Çevrim Sürelerinin İncelenmesi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1791614

Abstract

UV (ultraviyole) ve IR (kızılötesi) kürleme yöntemleri, verimlilikleri ve sürdürülebilirlikleri sayesinde kompozit üretiminde popülerlik kazanmaktadır. Bu çalışma, cam elyaf takviyeli kompozitler için UV, IR ve geleneksel fırında kürleme yöntemlerini mekanik özellikler, enerji tüketimi ve çevrim sürelerine odaklanarak karşılaştırmıştır. Bu yöntemler arasında UV LED kürleme, en yüksek eğilme mukavemeti, darbe direnci ve cam elyaf içeriği sağlayarak en verimli yöntem olduğunu kanıtlamıştır. Ayrıca, bir dakika içinde Barcol sertliğine ulaşarak kalıptan çıkarma süresini önemli ölçüde azaltmıştır. Ayrıca, UV LED kürleme, geleneksel yöntemlere kıyasla enerji tüketimini en aza indirmiş ve üretim çevrimlerini kısaltmıştır. Üstün mekanik performansı ve çevre dostu avantajlarıyla UV LED kürleme, sürdürülebilir kompozit üretimi için umut verici bir alternatif olarak ortaya çıkmaktadır.

Thanks

Yazarlar, bu çalışma boyunca gösterdikleri paha biçilmez destek için Sazcılar Otomotiv'e teşekkürlerini sunarlar.

References

  • [1] Balasubramanian, M., “Composite Materials and Processing (1st ed.)”, CRC Press, 1-29, (2013).
  • [2] Sönmez, M., “Polimer Matrisli Kompozitlerin Endüstri Ürünleri Tasarımında Önemi ve Geleceği: Türkiye’den Dört Örnek Firma Üzerine Bir İnceleme”, MSc Thesis, Istanbul Technical University, Türkiye (2009).
  • [3] Kut, A., CTP Teknolojisi, 131, (1984).
  • [4] Rajak, D.K., Pagar, D.D., Kumar, R. Pruncu, C.I., “Recent progress of reinforcement materials: a comprehensive overview of composite materials”, Journal of Materials Research and Technology, 8(6), 6354-6374, (2019).
  • [5] Wang, R., Zheng, S., Zheng, Y., “Polymer Matrix Composites and Technology”, Woodhead Publishing Limited, 573, (2011).
  • [6] Uday, M., KiranKumar, P., “Heat transfer studies for infrared radiation assisted curing in polymer composites”, In Journal of Physics: Conference Series, 1473(1), 012027, (2020).
  • [7] Kumar, P. K., Raghavendra, N. V., Sridhara, B. K., “Development of infrared radiation curing system for fiber reinforced polymer composites: An experimental investigation”, Indian Journal of Engineering & Material Sciences, Vol.18, 24-30, (2011).
  • [8] Abliz, D., Duan, Y., Steuernagel, L., Xie, L., Li, D., Ziegmann, G., “Curing methods for advanced polymer composites-a review”, Polymers and Polymer Composites, 21(6), 341-348 (2013).
  • [9] Harris, B., “Engineering composite materials”, The Institute of Materials, London, 194, (1999).
  • [10] Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., Elharfi, A., “Polymer composite materials: A comprehensive review”, Composite Structures, 262, 113640 (2021).
  • [11] Katnam, K. B., Comer, A. J., Roy, D., Da Silva, L. F. M., Young, T. M., “Composite repair in wind turbine blades: an overview”, The Journal of Adhesion, 91(1-2), 113-139 (2015).
  • [12] Manral, A., Ahmad, F., Sharma, B., “Advances in curing methods of reinforced polymer composites, Reinforced Polymer Composites: Processing”, Characterization and Post Life Cycle Assessment, 77-104 (2019).
  • [13] Endruweit, A., Johnson, M. S., Long, A. C, “Curing of composite components by ultraviolet radiation: A review”, Polymer Composites, 27(2):119-128 (2006).
  • [14] Collinson, M. G., Bower, M. P., Swait, T. J., Atkins, C. P., Hayes, S. A., Nuhiji, B., “Novel composite curing methods for sustainable manufacture: A review”, Composites Part C: Open Access, 9, 100293 (2022).
  • [15] Le Maoult, Y., Schmidt, F., “Infrared radiation applied to polymer processes”, Heat Transfer in Polymer Composite Materials: Forming Processes, 385-423 (2016).
  • [16] Kumar, P. K., Raghavendra, N. V., Sridhara, B. K., “Optimization of infrared radiation cure process parameters for glass fiber reinforced polymer composites”, Materials & Design, 32(3):1129-1137 (2011).
  • [17] Zhilyaev, I., Brauner, C., Queloz, S., Jordi, H., Lüscher, R., Conti, S., Conway, R., “Controlled curing of thermoset composite components using infrared radiation and mathematical modelling”, Composite Structures, 259, 113224 (2021).
  • [18] Lange, J., “Viscoelastic properties and transitions during thermal and UV cure of a methacrylate resin”, Polymer Engineering & Science, 39(9):1651-1660 (1999).
  • [19] Narayanan, V., Scranton, A.B., “UV Curing of composites: Optimization of initiators”, Radtech Report, 11(6): 25-30, (1997).
  • [20] Yuan, Q., Yang, M. B., Mai, Y. W., “Ultraviolet curing of glass fibre reinforced polyester composites”, Advanced Composites Letters, 9(5), 096369350000900504, (2000).
  • [21] Duan, Y., Wang, Y., Tang, Y., Li, D., Lu, B., “Fabrication and mechanical properties of UV-curable glass fiber-reinforced polymer—matrix composite”, Journal of Composite Materials, 45(5):565-572, (2011).
  • [22] Cvetanovska, A., Compston, P., “Degree of cure and tensile properties of vinylester resin cured with ultraviolet light”, Journal of Materials Science, 39(5):1791-1793, (2024).
  • [23] Adanur, S., Arumugham, Y., “Characteristics of ultraviolet cured glass–epoxy textile composites: part 1: experimental procedures and testing”, Journal of Industrial Textiles, 32(2): 93-106, (2002).
  • [24] Adanur, S., Arumugham, Y., “Characteristics of ultraviolet cured glass–epoxy composites part 2: results and discussion”, Journal of Industrial Textiles, 32(2): 107-118, (2002).
  • [25] Mishnaevsky Jr, L., Thomsen, K., “Costs of repair of wind turbine blades: Influence of technology aspects”, Wind Energy, 23(12): 2247-2255, (2020).
  • [26] Nakouzi, S., Pancrace, J., Schmidt, F., Le Maoult, Y., Berthet, F., “Simulations of an infrared composite curing process”, Advanced Engineering Materials, 13(7):604, (2011).
  • [27] Wang, Y., Liu, K., Li, F., Zhang, K., Li, Z., Nie, B., “Infrared laser heating of gfrp bars and finite element temperature field simulation”, Journal of Materials Research and Technology, 18, 3311-3318, (2022).
  • [28] Alpay, Y. O., Uygur, I., Kilincel, M., “On the optimum process parameters of infrared curing of carbon fiber-reinforced plastics”, Polymers and Polymer Composites, 28(6): 433-439, (2020).
  • [29] Balapanov, B., Montayev, S., Aygün, B. F., & Uysal, M., “Accelerated microwave curing of hybrid geopolymers with nano-silica for enhanced physico-mechanical properties”, Journal of Sustainable Construction Materials and Technologies, 9(4), (2024).
  • [30] Akderya, T., “Post-Ultraviolet-Curing Process Effects on Low-Velocity Impact Response of 3D Printed Polylactic Acid Parts”, Sakarya University Journal of Science, 27(5): 943-955, (2023).
  • [31] Polat, B. Y., “The influence of microwave curing on the strength of silica fume-added fly ash-based geopolymer mortars”, Journal of Sustainable Construction Materials and Technologies, 8(3): 207-215, (2023).

Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1791614

Abstract

UV (ultraviolet) and IR (infrared) curing methods are gaining popularity in composite manufacturing thanks to their efficiency and sustainability. This study compared UV, IR, and traditional oven-curing methods for glass fiber-reinforced composites, focusing on mechanical properties, energy consumption, and cycle times. Among these methods, UV LED curing proved the most efficient, yielding the highest bending strength, impact resistance, and glass fiber content. It also achieved Barcol hardness within one minute, significantly reducing demolding time. Additionally, UV LED curing minimized energy consumption and shortened production cycles compared to traditional methods. With its superior mechanical performance and eco-friendly advantages, UV LED curing emerges as a promising alternative for sustainable composite manufacturing.

Thanks

The authors acknowledge the effort of Sazcılar Automotive for invaluable support a throughout this work.

References

  • [1] Balasubramanian, M., “Composite Materials and Processing (1st ed.)”, CRC Press, 1-29, (2013).
  • [2] Sönmez, M., “Polimer Matrisli Kompozitlerin Endüstri Ürünleri Tasarımında Önemi ve Geleceği: Türkiye’den Dört Örnek Firma Üzerine Bir İnceleme”, MSc Thesis, Istanbul Technical University, Türkiye (2009).
  • [3] Kut, A., CTP Teknolojisi, 131, (1984).
  • [4] Rajak, D.K., Pagar, D.D., Kumar, R. Pruncu, C.I., “Recent progress of reinforcement materials: a comprehensive overview of composite materials”, Journal of Materials Research and Technology, 8(6), 6354-6374, (2019).
  • [5] Wang, R., Zheng, S., Zheng, Y., “Polymer Matrix Composites and Technology”, Woodhead Publishing Limited, 573, (2011).
  • [6] Uday, M., KiranKumar, P., “Heat transfer studies for infrared radiation assisted curing in polymer composites”, In Journal of Physics: Conference Series, 1473(1), 012027, (2020).
  • [7] Kumar, P. K., Raghavendra, N. V., Sridhara, B. K., “Development of infrared radiation curing system for fiber reinforced polymer composites: An experimental investigation”, Indian Journal of Engineering & Material Sciences, Vol.18, 24-30, (2011).
  • [8] Abliz, D., Duan, Y., Steuernagel, L., Xie, L., Li, D., Ziegmann, G., “Curing methods for advanced polymer composites-a review”, Polymers and Polymer Composites, 21(6), 341-348 (2013).
  • [9] Harris, B., “Engineering composite materials”, The Institute of Materials, London, 194, (1999).
  • [10] Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., Elharfi, A., “Polymer composite materials: A comprehensive review”, Composite Structures, 262, 113640 (2021).
  • [11] Katnam, K. B., Comer, A. J., Roy, D., Da Silva, L. F. M., Young, T. M., “Composite repair in wind turbine blades: an overview”, The Journal of Adhesion, 91(1-2), 113-139 (2015).
  • [12] Manral, A., Ahmad, F., Sharma, B., “Advances in curing methods of reinforced polymer composites, Reinforced Polymer Composites: Processing”, Characterization and Post Life Cycle Assessment, 77-104 (2019).
  • [13] Endruweit, A., Johnson, M. S., Long, A. C, “Curing of composite components by ultraviolet radiation: A review”, Polymer Composites, 27(2):119-128 (2006).
  • [14] Collinson, M. G., Bower, M. P., Swait, T. J., Atkins, C. P., Hayes, S. A., Nuhiji, B., “Novel composite curing methods for sustainable manufacture: A review”, Composites Part C: Open Access, 9, 100293 (2022).
  • [15] Le Maoult, Y., Schmidt, F., “Infrared radiation applied to polymer processes”, Heat Transfer in Polymer Composite Materials: Forming Processes, 385-423 (2016).
  • [16] Kumar, P. K., Raghavendra, N. V., Sridhara, B. K., “Optimization of infrared radiation cure process parameters for glass fiber reinforced polymer composites”, Materials & Design, 32(3):1129-1137 (2011).
  • [17] Zhilyaev, I., Brauner, C., Queloz, S., Jordi, H., Lüscher, R., Conti, S., Conway, R., “Controlled curing of thermoset composite components using infrared radiation and mathematical modelling”, Composite Structures, 259, 113224 (2021).
  • [18] Lange, J., “Viscoelastic properties and transitions during thermal and UV cure of a methacrylate resin”, Polymer Engineering & Science, 39(9):1651-1660 (1999).
  • [19] Narayanan, V., Scranton, A.B., “UV Curing of composites: Optimization of initiators”, Radtech Report, 11(6): 25-30, (1997).
  • [20] Yuan, Q., Yang, M. B., Mai, Y. W., “Ultraviolet curing of glass fibre reinforced polyester composites”, Advanced Composites Letters, 9(5), 096369350000900504, (2000).
  • [21] Duan, Y., Wang, Y., Tang, Y., Li, D., Lu, B., “Fabrication and mechanical properties of UV-curable glass fiber-reinforced polymer—matrix composite”, Journal of Composite Materials, 45(5):565-572, (2011).
  • [22] Cvetanovska, A., Compston, P., “Degree of cure and tensile properties of vinylester resin cured with ultraviolet light”, Journal of Materials Science, 39(5):1791-1793, (2024).
  • [23] Adanur, S., Arumugham, Y., “Characteristics of ultraviolet cured glass–epoxy textile composites: part 1: experimental procedures and testing”, Journal of Industrial Textiles, 32(2): 93-106, (2002).
  • [24] Adanur, S., Arumugham, Y., “Characteristics of ultraviolet cured glass–epoxy composites part 2: results and discussion”, Journal of Industrial Textiles, 32(2): 107-118, (2002).
  • [25] Mishnaevsky Jr, L., Thomsen, K., “Costs of repair of wind turbine blades: Influence of technology aspects”, Wind Energy, 23(12): 2247-2255, (2020).
  • [26] Nakouzi, S., Pancrace, J., Schmidt, F., Le Maoult, Y., Berthet, F., “Simulations of an infrared composite curing process”, Advanced Engineering Materials, 13(7):604, (2011).
  • [27] Wang, Y., Liu, K., Li, F., Zhang, K., Li, Z., Nie, B., “Infrared laser heating of gfrp bars and finite element temperature field simulation”, Journal of Materials Research and Technology, 18, 3311-3318, (2022).
  • [28] Alpay, Y. O., Uygur, I., Kilincel, M., “On the optimum process parameters of infrared curing of carbon fiber-reinforced plastics”, Polymers and Polymer Composites, 28(6): 433-439, (2020).
  • [29] Balapanov, B., Montayev, S., Aygün, B. F., & Uysal, M., “Accelerated microwave curing of hybrid geopolymers with nano-silica for enhanced physico-mechanical properties”, Journal of Sustainable Construction Materials and Technologies, 9(4), (2024).
  • [30] Akderya, T., “Post-Ultraviolet-Curing Process Effects on Low-Velocity Impact Response of 3D Printed Polylactic Acid Parts”, Sakarya University Journal of Science, 27(5): 943-955, (2023).
  • [31] Polat, B. Y., “The influence of microwave curing on the strength of silica fume-added fly ash-based geopolymer mortars”, Journal of Sustainable Construction Materials and Technologies, 8(3): 207-215, (2023).
There are 31 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Research Article
Authors

Hürrem Canitez 0000-0002-6272-435X

Kerime Gülmez 0009-0009-4251-8071

Hülya Karaçeper 0009-0008-6939-1122

Early Pub Date October 26, 2025
Publication Date November 16, 2025
Submission Date September 26, 2025
Acceptance Date October 18, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Canitez, H., Gülmez, K., & Karaçeper, H. (2025). Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1791614
AMA Canitez H, Gülmez K, Karaçeper H. Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies. Politeknik Dergisi. Published online October 1, 2025:1-1. doi:10.2339/politeknik.1791614
Chicago Canitez, Hürrem, Kerime Gülmez, and Hülya Karaçeper. “Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies”. Politeknik Dergisi, October (October 2025), 1-1. https://doi.org/10.2339/politeknik.1791614.
EndNote Canitez H, Gülmez K, Karaçeper H (October 1, 2025) Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies. Politeknik Dergisi 1–1.
IEEE H. Canitez, K. Gülmez, and H. Karaçeper, “Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies”, Politeknik Dergisi, pp. 1–1, October2025, doi: 10.2339/politeknik.1791614.
ISNAD Canitez, Hürrem et al. “Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies”. Politeknik Dergisi. October2025. 1-1. https://doi.org/10.2339/politeknik.1791614.
JAMA Canitez H, Gülmez K, Karaçeper H. Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies. Politeknik Dergisi. 2025;:1–1.
MLA Canitez, Hürrem et al. “Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1791614.
Vancouver Canitez H, Gülmez K, Karaçeper H. Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies. Politeknik Dergisi. 2025:1-.