Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Kürleme Teknolojileri Kullanılarak Üretilen Cam Elyaf Takviyeli Kompozitlerin Mekanik Özelliklerinin, Tüketilen Enerjinin ve Çevrim Sürelerinin İncelenmesi

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1791614

Öz

UV (ultraviyole) ve IR (kızılötesi) kürleme yöntemleri, verimlilikleri ve sürdürülebilirlikleri sayesinde kompozit üretiminde popülerlik kazanmaktadır. Bu çalışma, cam elyaf takviyeli kompozitler için UV, IR ve geleneksel fırında kürleme yöntemlerini mekanik özellikler, enerji tüketimi ve çevrim sürelerine odaklanarak karşılaştırmıştır. Bu yöntemler arasında UV LED kürleme, en yüksek eğilme mukavemeti, darbe direnci ve cam elyaf içeriği sağlayarak en verimli yöntem olduğunu kanıtlamıştır. Ayrıca, bir dakika içinde Barcol sertliğine ulaşarak kalıptan çıkarma süresini önemli ölçüde azaltmıştır. Ayrıca, UV LED kürleme, geleneksel yöntemlere kıyasla enerji tüketimini en aza indirmiş ve üretim çevrimlerini kısaltmıştır. Üstün mekanik performansı ve çevre dostu avantajlarıyla UV LED kürleme, sürdürülebilir kompozit üretimi için umut verici bir alternatif olarak ortaya çıkmaktadır.

Teşekkür

Yazarlar, bu çalışma boyunca gösterdikleri paha biçilmez destek için Sazcılar Otomotiv'e teşekkürlerini sunarlar.

Kaynakça

  • [1] Balasubramanian, M., “Composite Materials and Processing (1st ed.)”, CRC Press, 1-29, (2013).
  • [2] Sönmez, M., “Polimer Matrisli Kompozitlerin Endüstri Ürünleri Tasarımında Önemi ve Geleceği: Türkiye’den Dört Örnek Firma Üzerine Bir İnceleme”, MSc Thesis, Istanbul Technical University, Türkiye (2009).
  • [3] Kut, A., CTP Teknolojisi, 131, (1984).
  • [4] Rajak, D.K., Pagar, D.D., Kumar, R. Pruncu, C.I., “Recent progress of reinforcement materials: a comprehensive overview of composite materials”, Journal of Materials Research and Technology, 8(6), 6354-6374, (2019).
  • [5] Wang, R., Zheng, S., Zheng, Y., “Polymer Matrix Composites and Technology”, Woodhead Publishing Limited, 573, (2011).
  • [6] Uday, M., KiranKumar, P., “Heat transfer studies for infrared radiation assisted curing in polymer composites”, In Journal of Physics: Conference Series, 1473(1), 012027, (2020).
  • [7] Kumar, P. K., Raghavendra, N. V., Sridhara, B. K., “Development of infrared radiation curing system for fiber reinforced polymer composites: An experimental investigation”, Indian Journal of Engineering & Material Sciences, Vol.18, 24-30, (2011).
  • [8] Abliz, D., Duan, Y., Steuernagel, L., Xie, L., Li, D., Ziegmann, G., “Curing methods for advanced polymer composites-a review”, Polymers and Polymer Composites, 21(6), 341-348 (2013).
  • [9] Harris, B., “Engineering composite materials”, The Institute of Materials, London, 194, (1999).
  • [10] Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., Elharfi, A., “Polymer composite materials: A comprehensive review”, Composite Structures, 262, 113640 (2021).
  • [11] Katnam, K. B., Comer, A. J., Roy, D., Da Silva, L. F. M., Young, T. M., “Composite repair in wind turbine blades: an overview”, The Journal of Adhesion, 91(1-2), 113-139 (2015).
  • [12] Manral, A., Ahmad, F., Sharma, B., “Advances in curing methods of reinforced polymer composites, Reinforced Polymer Composites: Processing”, Characterization and Post Life Cycle Assessment, 77-104 (2019).
  • [13] Endruweit, A., Johnson, M. S., Long, A. C, “Curing of composite components by ultraviolet radiation: A review”, Polymer Composites, 27(2):119-128 (2006).
  • [14] Collinson, M. G., Bower, M. P., Swait, T. J., Atkins, C. P., Hayes, S. A., Nuhiji, B., “Novel composite curing methods for sustainable manufacture: A review”, Composites Part C: Open Access, 9, 100293 (2022).
  • [15] Le Maoult, Y., Schmidt, F., “Infrared radiation applied to polymer processes”, Heat Transfer in Polymer Composite Materials: Forming Processes, 385-423 (2016).
  • [16] Kumar, P. K., Raghavendra, N. V., Sridhara, B. K., “Optimization of infrared radiation cure process parameters for glass fiber reinforced polymer composites”, Materials & Design, 32(3):1129-1137 (2011).
  • [17] Zhilyaev, I., Brauner, C., Queloz, S., Jordi, H., Lüscher, R., Conti, S., Conway, R., “Controlled curing of thermoset composite components using infrared radiation and mathematical modelling”, Composite Structures, 259, 113224 (2021).
  • [18] Lange, J., “Viscoelastic properties and transitions during thermal and UV cure of a methacrylate resin”, Polymer Engineering & Science, 39(9):1651-1660 (1999).
  • [19] Narayanan, V., Scranton, A.B., “UV Curing of composites: Optimization of initiators”, Radtech Report, 11(6): 25-30, (1997).
  • [20] Yuan, Q., Yang, M. B., Mai, Y. W., “Ultraviolet curing of glass fibre reinforced polyester composites”, Advanced Composites Letters, 9(5), 096369350000900504, (2000).
  • [21] Duan, Y., Wang, Y., Tang, Y., Li, D., Lu, B., “Fabrication and mechanical properties of UV-curable glass fiber-reinforced polymer—matrix composite”, Journal of Composite Materials, 45(5):565-572, (2011).
  • [22] Cvetanovska, A., Compston, P., “Degree of cure and tensile properties of vinylester resin cured with ultraviolet light”, Journal of Materials Science, 39(5):1791-1793, (2024).
  • [23] Adanur, S., Arumugham, Y., “Characteristics of ultraviolet cured glass–epoxy textile composites: part 1: experimental procedures and testing”, Journal of Industrial Textiles, 32(2): 93-106, (2002).
  • [24] Adanur, S., Arumugham, Y., “Characteristics of ultraviolet cured glass–epoxy composites part 2: results and discussion”, Journal of Industrial Textiles, 32(2): 107-118, (2002).
  • [25] Mishnaevsky Jr, L., Thomsen, K., “Costs of repair of wind turbine blades: Influence of technology aspects”, Wind Energy, 23(12): 2247-2255, (2020).
  • [26] Nakouzi, S., Pancrace, J., Schmidt, F., Le Maoult, Y., Berthet, F., “Simulations of an infrared composite curing process”, Advanced Engineering Materials, 13(7):604, (2011).
  • [27] Wang, Y., Liu, K., Li, F., Zhang, K., Li, Z., Nie, B., “Infrared laser heating of gfrp bars and finite element temperature field simulation”, Journal of Materials Research and Technology, 18, 3311-3318, (2022).
  • [28] Alpay, Y. O., Uygur, I., Kilincel, M., “On the optimum process parameters of infrared curing of carbon fiber-reinforced plastics”, Polymers and Polymer Composites, 28(6): 433-439, (2020).
  • [29] Balapanov, B., Montayev, S., Aygün, B. F., & Uysal, M., “Accelerated microwave curing of hybrid geopolymers with nano-silica for enhanced physico-mechanical properties”, Journal of Sustainable Construction Materials and Technologies, 9(4), (2024).
  • [30] Akderya, T., “Post-Ultraviolet-Curing Process Effects on Low-Velocity Impact Response of 3D Printed Polylactic Acid Parts”, Sakarya University Journal of Science, 27(5): 943-955, (2023).
  • [31] Polat, B. Y., “The influence of microwave curing on the strength of silica fume-added fly ash-based geopolymer mortars”, Journal of Sustainable Construction Materials and Technologies, 8(3): 207-215, (2023).

Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1791614

Öz

UV (ultraviolet) and IR (infrared) curing methods are gaining popularity in composite manufacturing thanks to their efficiency and sustainability. This study compared UV, IR, and traditional oven-curing methods for glass fiber-reinforced composites, focusing on mechanical properties, energy consumption, and cycle times. Among these methods, UV LED curing proved the most efficient, yielding the highest bending strength, impact resistance, and glass fiber content. It also achieved Barcol hardness within one minute, significantly reducing demolding time. Additionally, UV LED curing minimized energy consumption and shortened production cycles compared to traditional methods. With its superior mechanical performance and eco-friendly advantages, UV LED curing emerges as a promising alternative for sustainable composite manufacturing.

Teşekkür

The authors acknowledge the effort of Sazcılar Automotive for invaluable support a throughout this work.

Kaynakça

  • [1] Balasubramanian, M., “Composite Materials and Processing (1st ed.)”, CRC Press, 1-29, (2013).
  • [2] Sönmez, M., “Polimer Matrisli Kompozitlerin Endüstri Ürünleri Tasarımında Önemi ve Geleceği: Türkiye’den Dört Örnek Firma Üzerine Bir İnceleme”, MSc Thesis, Istanbul Technical University, Türkiye (2009).
  • [3] Kut, A., CTP Teknolojisi, 131, (1984).
  • [4] Rajak, D.K., Pagar, D.D., Kumar, R. Pruncu, C.I., “Recent progress of reinforcement materials: a comprehensive overview of composite materials”, Journal of Materials Research and Technology, 8(6), 6354-6374, (2019).
  • [5] Wang, R., Zheng, S., Zheng, Y., “Polymer Matrix Composites and Technology”, Woodhead Publishing Limited, 573, (2011).
  • [6] Uday, M., KiranKumar, P., “Heat transfer studies for infrared radiation assisted curing in polymer composites”, In Journal of Physics: Conference Series, 1473(1), 012027, (2020).
  • [7] Kumar, P. K., Raghavendra, N. V., Sridhara, B. K., “Development of infrared radiation curing system for fiber reinforced polymer composites: An experimental investigation”, Indian Journal of Engineering & Material Sciences, Vol.18, 24-30, (2011).
  • [8] Abliz, D., Duan, Y., Steuernagel, L., Xie, L., Li, D., Ziegmann, G., “Curing methods for advanced polymer composites-a review”, Polymers and Polymer Composites, 21(6), 341-348 (2013).
  • [9] Harris, B., “Engineering composite materials”, The Institute of Materials, London, 194, (1999).
  • [10] Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., Elharfi, A., “Polymer composite materials: A comprehensive review”, Composite Structures, 262, 113640 (2021).
  • [11] Katnam, K. B., Comer, A. J., Roy, D., Da Silva, L. F. M., Young, T. M., “Composite repair in wind turbine blades: an overview”, The Journal of Adhesion, 91(1-2), 113-139 (2015).
  • [12] Manral, A., Ahmad, F., Sharma, B., “Advances in curing methods of reinforced polymer composites, Reinforced Polymer Composites: Processing”, Characterization and Post Life Cycle Assessment, 77-104 (2019).
  • [13] Endruweit, A., Johnson, M. S., Long, A. C, “Curing of composite components by ultraviolet radiation: A review”, Polymer Composites, 27(2):119-128 (2006).
  • [14] Collinson, M. G., Bower, M. P., Swait, T. J., Atkins, C. P., Hayes, S. A., Nuhiji, B., “Novel composite curing methods for sustainable manufacture: A review”, Composites Part C: Open Access, 9, 100293 (2022).
  • [15] Le Maoult, Y., Schmidt, F., “Infrared radiation applied to polymer processes”, Heat Transfer in Polymer Composite Materials: Forming Processes, 385-423 (2016).
  • [16] Kumar, P. K., Raghavendra, N. V., Sridhara, B. K., “Optimization of infrared radiation cure process parameters for glass fiber reinforced polymer composites”, Materials & Design, 32(3):1129-1137 (2011).
  • [17] Zhilyaev, I., Brauner, C., Queloz, S., Jordi, H., Lüscher, R., Conti, S., Conway, R., “Controlled curing of thermoset composite components using infrared radiation and mathematical modelling”, Composite Structures, 259, 113224 (2021).
  • [18] Lange, J., “Viscoelastic properties and transitions during thermal and UV cure of a methacrylate resin”, Polymer Engineering & Science, 39(9):1651-1660 (1999).
  • [19] Narayanan, V., Scranton, A.B., “UV Curing of composites: Optimization of initiators”, Radtech Report, 11(6): 25-30, (1997).
  • [20] Yuan, Q., Yang, M. B., Mai, Y. W., “Ultraviolet curing of glass fibre reinforced polyester composites”, Advanced Composites Letters, 9(5), 096369350000900504, (2000).
  • [21] Duan, Y., Wang, Y., Tang, Y., Li, D., Lu, B., “Fabrication and mechanical properties of UV-curable glass fiber-reinforced polymer—matrix composite”, Journal of Composite Materials, 45(5):565-572, (2011).
  • [22] Cvetanovska, A., Compston, P., “Degree of cure and tensile properties of vinylester resin cured with ultraviolet light”, Journal of Materials Science, 39(5):1791-1793, (2024).
  • [23] Adanur, S., Arumugham, Y., “Characteristics of ultraviolet cured glass–epoxy textile composites: part 1: experimental procedures and testing”, Journal of Industrial Textiles, 32(2): 93-106, (2002).
  • [24] Adanur, S., Arumugham, Y., “Characteristics of ultraviolet cured glass–epoxy composites part 2: results and discussion”, Journal of Industrial Textiles, 32(2): 107-118, (2002).
  • [25] Mishnaevsky Jr, L., Thomsen, K., “Costs of repair of wind turbine blades: Influence of technology aspects”, Wind Energy, 23(12): 2247-2255, (2020).
  • [26] Nakouzi, S., Pancrace, J., Schmidt, F., Le Maoult, Y., Berthet, F., “Simulations of an infrared composite curing process”, Advanced Engineering Materials, 13(7):604, (2011).
  • [27] Wang, Y., Liu, K., Li, F., Zhang, K., Li, Z., Nie, B., “Infrared laser heating of gfrp bars and finite element temperature field simulation”, Journal of Materials Research and Technology, 18, 3311-3318, (2022).
  • [28] Alpay, Y. O., Uygur, I., Kilincel, M., “On the optimum process parameters of infrared curing of carbon fiber-reinforced plastics”, Polymers and Polymer Composites, 28(6): 433-439, (2020).
  • [29] Balapanov, B., Montayev, S., Aygün, B. F., & Uysal, M., “Accelerated microwave curing of hybrid geopolymers with nano-silica for enhanced physico-mechanical properties”, Journal of Sustainable Construction Materials and Technologies, 9(4), (2024).
  • [30] Akderya, T., “Post-Ultraviolet-Curing Process Effects on Low-Velocity Impact Response of 3D Printed Polylactic Acid Parts”, Sakarya University Journal of Science, 27(5): 943-955, (2023).
  • [31] Polat, B. Y., “The influence of microwave curing on the strength of silica fume-added fly ash-based geopolymer mortars”, Journal of Sustainable Construction Materials and Technologies, 8(3): 207-215, (2023).
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makalesi
Yazarlar

Hürrem Canitez 0000-0002-6272-435X

Kerime Gülmez 0009-0009-4251-8071

Hülya Karaçeper 0009-0008-6939-1122

Erken Görünüm Tarihi 26 Ekim 2025
Yayımlanma Tarihi 13 Kasım 2025
Gönderilme Tarihi 26 Eylül 2025
Kabul Tarihi 18 Ekim 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Canitez, H., Gülmez, K., & Karaçeper, H. (2025). Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1791614
AMA Canitez H, Gülmez K, Karaçeper H. Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies. Politeknik Dergisi. Published online 01 Ekim 2025:1-1. doi:10.2339/politeknik.1791614
Chicago Canitez, Hürrem, Kerime Gülmez, ve Hülya Karaçeper. “Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies”. Politeknik Dergisi, Ekim (Ekim 2025), 1-1. https://doi.org/10.2339/politeknik.1791614.
EndNote Canitez H, Gülmez K, Karaçeper H (01 Ekim 2025) Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies. Politeknik Dergisi 1–1.
IEEE H. Canitez, K. Gülmez, ve H. Karaçeper, “Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies”, Politeknik Dergisi, ss. 1–1, Ekim2025, doi: 10.2339/politeknik.1791614.
ISNAD Canitez, Hürrem vd. “Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies”. Politeknik Dergisi. Ekim2025. 1-1. https://doi.org/10.2339/politeknik.1791614.
JAMA Canitez H, Gülmez K, Karaçeper H. Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies. Politeknik Dergisi. 2025;:1–1.
MLA Canitez, Hürrem vd. “Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1791614.
Vancouver Canitez H, Gülmez K, Karaçeper H. Investigation Of Mechanical Properties, Consumed Energy And Cycle Times Of Glass Fiber Reinforced Composites Produced Using Different Curing Technologies. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.