Research Article
BibTex RIS Cite

Ticari Polipropilenin Viskoelastik Karakterizasyonu ve Mekanik Histerezis Davranışı

Year 2023, Volume: 26 Issue: 3, 1121 - 1130, 01.10.2023
https://doi.org/10.2339/politeknik.904719

Abstract

Bu projenin temel amacı, bir polipropilen malzemenin viskoelastik davranışını incelemektir. Viskoelastisite teorisi, tam bir analiz yapmak için bir polipropilen malzemenin matematiksel olarak nasıl modellenebileceğini anlamak için kullanılır. Polipropilen malzemenin zamana bağlı gerilme-uzama tepkisi, malzeme ile yapılan gevşeme testi ile araştırılır. Daha sonra esneklik veya sertlik gibi matematiksel modeller için gerekli parametreler, k veya E, gevşeme süresi ile birlikte, τ, bu davranışı göstermektedir. Deneylerden gelen yanıt eğrisi, Marc yazılımı üzerinde bir sonlu eleman analizini tamamlamak için matematiksel modelleri içeren teori ile analitik çalışma ile karşılaştırılmıştır. Bu analizden elde edilen eğri, analitik çalışmadan gelenle örtüşmektedir. Dinamik analiz testini simüle etmek için Marc'ta zorunlu salınım prosedürü gerçekleştirilmiş ve numunenin dahili enerji kaybı histerezis grafiği ile incelenmiştir.

References

  • [1] https://www.unep.org/interactive/beat-plastic-pollution/, United Nations Environment Programme, "Beat Plastic Pollution".
  • [2] G. Dieter and L. Schmidt, “Engineering Design”, McGraw-Hill Book Company, (2021).
  • [3] H. Maden and K. Çetinkaya, "Joining analysis of polypropylene parts in the rotary friction welding process and developing of joints profile," Politeknik Dergisi, 24(3):1263-1273, (2021).
  • [4] E. Yeter, "Investigation of ballistic impact response of aluminum alloys hybridized with kevlar/epoxy composites," Politeknik Dergisi, 22(1): 219-227, (2019).
  • [5] A. Gültekin Toroslu, "Geri dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) plastik malzemesinin kalıplama parametrelerine etkisi," Politeknik Dergisi, 23(1): 1-6, (2020).
  • [6] D. Gutierrez-Lemini, “Engineering Viscoelasticity”, Springer, Boston, U.S.A., (2014).
  • [7] http://web.mit.edu/course/3/3.11/www/modules/visco.pdf, D. Roylance, "Engineering Viscoelasticity", (2001).
  • [8] T. Ariyama, Y. Mori and K. Kaneko, "Tensile properties and stress relaxation of polypropylene at elevated temperatures," Polymer Engineering & Science, 37(1): 81-90, (1997).
  • [9] MSC Software, “Vol A: Theory and User Information”, Santa Ana, U.S.A., (2018).
  • [10] J. Kim, J. Kyoung, A. Sablok, and K. Lambrakos, "A Nonlinear Viscoelastic Model for Polyester Mooring Line Analysis," Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1, (2011).
  • [11] C. Machiraju, A.-V. Phan, A. Pearsall, and S. Madanagopal, "Viscoelastic studies of human subscapularis tendon: Relaxation test and a Wiechert model," Computer Methods and Programs in Biomedicine, 83(1): 29 - 33, (2006).
  • [12] J. Pacheco, C. Bavastri and J. Pereira, "Viscoelastic Relaxation Modulus Characterization Using Prony Series," Latin American Journal of Solids and Structures, 12: 420-445, (2015).
  • [13] K. P. Menard and N. Menard, “Dynamic Mechanical Analysis,” in Encyclopedia of Analytical Chemistry, American Cancer Society, 1-25, (2017).
  • [14] M. C. Tanzi, S. Farè and G. Candiani, “Chapter 2 - Mechanical Properties of Materials,” Foundations of Biomaterials Engineering, Academic Press, (2019).
  • [15] A. Akinay, W. Brostow, V. Castano, R. Maksimov and P. Olszynski, "Time–temperature correspondence prediction of stress relaxation of polymeric materials from a minimum of data," Polymer, 43: 3593-3600, (2002).
  • [16] E. A. Lopez-Guerra and S. d. J. Solares, "Modeling viscoelasticity through spring–dashpot models in intermittent-contact atomic force microscopy," Beilstein Journal of Nanotechnology, 5: 2149 - 2163, (2014).
  • [17] J. Kim, H. Lee and N. Kim, "Determination of Shear and Bulk Moduli of Viscoelastic Solids from the Indirect Tension Creep Test," Journal of Engineering Mechanics-ASCE - J ENG MECH-ASCE, 136(9): 1067-1075, (2010).
  • [18] https://www.mscsoftware.com/assets/103_elast_paper.pdf, MSC Software, "Nonlinear Finite Element Analysis of Elastomers from MSC software".
  • [19] N. Tschoegl and W. a. E. I. Knauss, "Poisson's Ratio in Linear Viscoelasticity – A Critical Review," Mechanics of Time-Dependent Material, 6(1): 3-51, (2002).
  • [20] X. Wang, J. A. Schoen and M. E. Rentschler, "A quantitative comparison of soft tissue compressive viscoelastic model accuracy," Journal of the Mechanical Behavior of Biomedical Materials, 20: 126 - 136, (2013).
  • [21] G. Basseri, M. Mehrabi Mazidi, F. Hosseini and M. K. Razavi Aghjeh, "Relationship among microstructure, linear viscoelastic behavior and mechanical properties of SBS triblock copolymer-compatibilized PP/SAN blend," Polymer Bulletin, 71(2), (2013).
  • [22] https://www.doitpoms.ac.uk/tlplib/bioelasticity/viscoelasticity-hysteresis.php?printable=1, University of Cambridge, "Viscoelasticity and Hysteresis".
  • [23] K. Michalakis, P. L. Calvani and H. Hirayama, "Biomechanical considerations on tooth-implant supported fixed partial dentures," Journal of Dental Biomechanics, 3, (2012).
  • [24] N. Özkaya, M. Nordin, D. Goldsheyder and D. Leger, "Mechanical Properties of Biological Tissues from BIOEN 520 of University of Washington,"http://courses.washington.edu/bioen520/notes/Viscoelasticity.pdf (2012).
  • [25] Dunson, Debra L. “Characterization of Polymers using Dynamic Mechanical Analysis (DMA).” (2017).

Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene

Year 2023, Volume: 26 Issue: 3, 1121 - 1130, 01.10.2023
https://doi.org/10.2339/politeknik.904719

Abstract

The main objective of this project is to investigate the viscoelastic behavior of polypropylene material. The theory of viscoelasticity is used to understand how a polypropylene material can be modeled mathematically to make a complete analysis. The time-dependent stress-strain response of the polypropylene material is investigated with the relaxation test that is carried out with the material. Then the required parameters for mathematical models such as elasticity or stiffness, k or E, along with the relaxation time, τ, is found to illustrate this behavior. The response curve from experiments is compared with the analytical study with the theory that includes the mathematical models to complete a finite element analysis on Marc. The curve that is achieved from this analysis overlapped with the one coming from the analytical study. Forced oscillation procedure is carried out in Marc to simulate the dynamic analysis test. Internal energy loss of the specimen is inspected via the hysteresis graph.

References

  • [1] https://www.unep.org/interactive/beat-plastic-pollution/, United Nations Environment Programme, "Beat Plastic Pollution".
  • [2] G. Dieter and L. Schmidt, “Engineering Design”, McGraw-Hill Book Company, (2021).
  • [3] H. Maden and K. Çetinkaya, "Joining analysis of polypropylene parts in the rotary friction welding process and developing of joints profile," Politeknik Dergisi, 24(3):1263-1273, (2021).
  • [4] E. Yeter, "Investigation of ballistic impact response of aluminum alloys hybridized with kevlar/epoxy composites," Politeknik Dergisi, 22(1): 219-227, (2019).
  • [5] A. Gültekin Toroslu, "Geri dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) plastik malzemesinin kalıplama parametrelerine etkisi," Politeknik Dergisi, 23(1): 1-6, (2020).
  • [6] D. Gutierrez-Lemini, “Engineering Viscoelasticity”, Springer, Boston, U.S.A., (2014).
  • [7] http://web.mit.edu/course/3/3.11/www/modules/visco.pdf, D. Roylance, "Engineering Viscoelasticity", (2001).
  • [8] T. Ariyama, Y. Mori and K. Kaneko, "Tensile properties and stress relaxation of polypropylene at elevated temperatures," Polymer Engineering & Science, 37(1): 81-90, (1997).
  • [9] MSC Software, “Vol A: Theory and User Information”, Santa Ana, U.S.A., (2018).
  • [10] J. Kim, J. Kyoung, A. Sablok, and K. Lambrakos, "A Nonlinear Viscoelastic Model for Polyester Mooring Line Analysis," Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1, (2011).
  • [11] C. Machiraju, A.-V. Phan, A. Pearsall, and S. Madanagopal, "Viscoelastic studies of human subscapularis tendon: Relaxation test and a Wiechert model," Computer Methods and Programs in Biomedicine, 83(1): 29 - 33, (2006).
  • [12] J. Pacheco, C. Bavastri and J. Pereira, "Viscoelastic Relaxation Modulus Characterization Using Prony Series," Latin American Journal of Solids and Structures, 12: 420-445, (2015).
  • [13] K. P. Menard and N. Menard, “Dynamic Mechanical Analysis,” in Encyclopedia of Analytical Chemistry, American Cancer Society, 1-25, (2017).
  • [14] M. C. Tanzi, S. Farè and G. Candiani, “Chapter 2 - Mechanical Properties of Materials,” Foundations of Biomaterials Engineering, Academic Press, (2019).
  • [15] A. Akinay, W. Brostow, V. Castano, R. Maksimov and P. Olszynski, "Time–temperature correspondence prediction of stress relaxation of polymeric materials from a minimum of data," Polymer, 43: 3593-3600, (2002).
  • [16] E. A. Lopez-Guerra and S. d. J. Solares, "Modeling viscoelasticity through spring–dashpot models in intermittent-contact atomic force microscopy," Beilstein Journal of Nanotechnology, 5: 2149 - 2163, (2014).
  • [17] J. Kim, H. Lee and N. Kim, "Determination of Shear and Bulk Moduli of Viscoelastic Solids from the Indirect Tension Creep Test," Journal of Engineering Mechanics-ASCE - J ENG MECH-ASCE, 136(9): 1067-1075, (2010).
  • [18] https://www.mscsoftware.com/assets/103_elast_paper.pdf, MSC Software, "Nonlinear Finite Element Analysis of Elastomers from MSC software".
  • [19] N. Tschoegl and W. a. E. I. Knauss, "Poisson's Ratio in Linear Viscoelasticity – A Critical Review," Mechanics of Time-Dependent Material, 6(1): 3-51, (2002).
  • [20] X. Wang, J. A. Schoen and M. E. Rentschler, "A quantitative comparison of soft tissue compressive viscoelastic model accuracy," Journal of the Mechanical Behavior of Biomedical Materials, 20: 126 - 136, (2013).
  • [21] G. Basseri, M. Mehrabi Mazidi, F. Hosseini and M. K. Razavi Aghjeh, "Relationship among microstructure, linear viscoelastic behavior and mechanical properties of SBS triblock copolymer-compatibilized PP/SAN blend," Polymer Bulletin, 71(2), (2013).
  • [22] https://www.doitpoms.ac.uk/tlplib/bioelasticity/viscoelasticity-hysteresis.php?printable=1, University of Cambridge, "Viscoelasticity and Hysteresis".
  • [23] K. Michalakis, P. L. Calvani and H. Hirayama, "Biomechanical considerations on tooth-implant supported fixed partial dentures," Journal of Dental Biomechanics, 3, (2012).
  • [24] N. Özkaya, M. Nordin, D. Goldsheyder and D. Leger, "Mechanical Properties of Biological Tissues from BIOEN 520 of University of Washington,"http://courses.washington.edu/bioen520/notes/Viscoelasticity.pdf (2012).
  • [25] Dunson, Debra L. “Characterization of Polymers using Dynamic Mechanical Analysis (DMA).” (2017).
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mustafa Mert Yılmazyurt 0000-0003-1697-6756

Serhat Eyüpreisoğlu 0000-0002-1456-9359

Ali Fethi Okyar 0000-0002-2561-7547

Onur Cem Namlı 0000-0003-3610-1914

Publication Date October 1, 2023
Submission Date March 29, 2021
Published in Issue Year 2023 Volume: 26 Issue: 3

Cite

APA Yılmazyurt, M. M., Eyüpreisoğlu, S., Okyar, A. F., Namlı, O. C. (2023). Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene. Politeknik Dergisi, 26(3), 1121-1130. https://doi.org/10.2339/politeknik.904719
AMA Yılmazyurt MM, Eyüpreisoğlu S, Okyar AF, Namlı OC. Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene. Politeknik Dergisi. October 2023;26(3):1121-1130. doi:10.2339/politeknik.904719
Chicago Yılmazyurt, Mustafa Mert, Serhat Eyüpreisoğlu, Ali Fethi Okyar, and Onur Cem Namlı. “Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene”. Politeknik Dergisi 26, no. 3 (October 2023): 1121-30. https://doi.org/10.2339/politeknik.904719.
EndNote Yılmazyurt MM, Eyüpreisoğlu S, Okyar AF, Namlı OC (October 1, 2023) Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene. Politeknik Dergisi 26 3 1121–1130.
IEEE M. M. Yılmazyurt, S. Eyüpreisoğlu, A. F. Okyar, and O. C. Namlı, “Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene”, Politeknik Dergisi, vol. 26, no. 3, pp. 1121–1130, 2023, doi: 10.2339/politeknik.904719.
ISNAD Yılmazyurt, Mustafa Mert et al. “Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene”. Politeknik Dergisi 26/3 (October 2023), 1121-1130. https://doi.org/10.2339/politeknik.904719.
JAMA Yılmazyurt MM, Eyüpreisoğlu S, Okyar AF, Namlı OC. Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene. Politeknik Dergisi. 2023;26:1121–1130.
MLA Yılmazyurt, Mustafa Mert et al. “Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene”. Politeknik Dergisi, vol. 26, no. 3, 2023, pp. 1121-30, doi:10.2339/politeknik.904719.
Vancouver Yılmazyurt MM, Eyüpreisoğlu S, Okyar AF, Namlı OC. Viscoelastic Characterization and Mechanical Hystheresis of Commercial Grade Polypropylene. Politeknik Dergisi. 2023;26(3):1121-30.