Research Article
BibTex RIS Cite

316L/HA Kompozitlerinin Farklı Fizyolojik Sıvılardaki Korozyon ve Biyoaktivite Davranışının Araştırılması

Year 2024, Volume: 27 Issue: 5, 1913 - 1921, 02.10.2024
https://doi.org/10.2339/politeknik.1312685

Abstract

Bu çalışmada, biyomedikal uygulamalar için toz metalurjisi yöntemi ile SS316L/HA kompozitleri üretilmiş; yoğunluğu, mikroyapısı, sertliği, korozyon direnci ve biyoaktivite özellikleri incelenmiştir. 316L matrisine ağırlıkça %3, %5 ve %7 oranında hidroksiapatit (HA) takviye edilmiştir. HA oranının artışı ile birlikte yoğunluk ve sertlik azalmış, porozite ise artmıştır. XRD analizlerinde 316L ve HA piklerinin yanı sıra CaCr2O4 fazının pikleri de görülmüştür. Korozyon deneyleri Ringer ve Hank's fizyolojik sıvılarında gerçekleştirilerek kompozitler içinde %5 takviyeli olan numunenin korozyon hızı en düşük çıkmıştır. Biyoaktivite testleri simüle edilmiş vücut sıvısında (SBF) 7 ve 14 gün bekletilerek gerçekleştirilmiş ve her iki sürenin sonunda numune yüzeylerinde küresel kristalitlerden oluşan apatit tabakası gözlenmiştir

Supporting Institution

Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FDK-2019-8440

References

  • [1] Lin S., Xiong W., “Microstructure and abrasive behaviors of TiC-316L composites prepared by warm compaction and microwave sintering”, Adv Powder Technol., 23: 419–25, (2012).
  • [2] Guan D., He X., Zhang R., Li R., Qu X., “Tribological and corrosion properties of PM 316L matrix composites reinforced by in situ polymer-derived ceramics”, Vacuum, 148: 319–26, (2018).
  • [3] Liu X., Pagounis E., Hellman J., Lindroos V.K., “Influence of reinforcement particle size distribution on the mechanical behavior of a stainless steel/TiN composite”, Metall Mater Trans A, 31: 309–18, (2000).
  • [4] Auger J.M., Saunier S., Valdivieso F., “Characterisation of sintering of alumina matrix-stainless steel dispersion composite and interaction between chromium, carbon and alumina during powder metallurgy process”, Powder Metall., 54: 522–8, (2011).
  • [5] Tiwari S.K., Mishra T., Gunjan M.K., Bhattacharyya A.S., Singh T.B., and Singh R., “Development and characterization of sol-gel silica-alumina composite coatings on AISI 316L for implant applications”, Surf. Coatings Technol., 201: 7582–7588, (2007).
  • [6] Balamurugan A., Balossier G., Kannan S., Michel J. and Rajeswari S. “In vitro biological, chemical and electrochemical evaluation of titania reinforced hydroxyapatite sol-gel coatings on surgical grade 316L SS”, Mater. Sci. Eng., C 27: 162–171, (2007).
  • [7] Gopi D., Prakash V.C.A., Kavitha L., “Evaluation of hydroxyapatite coatings on borate passivated 316L SS in Ringer’s solution”, Mater Sci Eng C, 29: 955–8, (2009).
  • [8] Kannan S., Balamurugan A., Rajeswari S., “Electrochemical characterization of hydroxyapatite coatings on HNO 3 passivated 316L SS for implant applications”, Electrochim Acta., 50: 2065–72, (2005).
  • [9] Prem Ananth K., Nathanael AJ., Jose SP., Oh T.H., Mangalaraj D., Ballamurugan A.M.,, “Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties”, Appl Surf Sci , 353: 189–99, (2015).
  • [10] Garcia-Lobato M.A., Mtz-Enriquez A.I., Garcia C.R., Velazquez-Manzanares M., Avalos-Belmontes F., Ramos-Gonzalez R., Garcia-Cerda L.A. “Corrosion resistance and in vitro bioactivity of dense and porous titania coatings deposited on 316L SS by spraying method”, Appl Surf Sci., 484: 975–80, (2019).
  • [11] Srinivasan A., Rajendran N.,“Electrochemical Corrosion and In Vitro Bioactivity of SiO2:ZrO2-Coated 316L Stainless Steel in Simulated Body Fluid”, J Mater Eng Perform., 24 : 3056–67, (2015).
  • [12] Tiwari S.K., Adhikary J., Singh T.B., Singh R.,”Preparation and characterization of sol-gel derived yttria doped zirconia coatings on AISI 316L”, Thin Solid Films., 517: 4502–4508, (2009).
  • [13] Radwan M., Nygren M., Flodström K., Esmaelzadeh S., “Fabrication of crack-free SUS316L/Al2O3 functionally graded materials by spark plasma sintering” J Mater Sci., 46: 5807–14, (2011).
  • [14] Akmal M., Hussain M.A., Ikram H., Sattar T., Jameel S., Kim J.Y., Khalid F.A., Kim, J.W., “In-vitro electrochemical and bioactivity evaluation of SS316L reinforced hydroxyapatite functionally graded materials fabricated for biomedical implants” Ceram Int., 42: 3855–63, (2016).
  • [15] Mishina H., Inumaru Y., and Kaitoku K., “Fabrication of ZrO2/AISI316L Functionally Graded Materials For Joint Prostheses”, Materials Science and Engineering A, 475: 141–147, (2008).
  • [16] Ataollahi Oshkour A., Pramanik S., Mehrali M., Yau Y.H., Tarlochan F., Abu Osman N.A., “Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite”, J Mech Behav Biomed Mater , 49: 321–31, (2015).
  • [17] Lodhi M. J. K., Deen K. M., Greenlee-Wacker M. C. and Haider W."Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications", Addit. Manuf., 27: 8–19, (2019).
  • [18] Sumita M., Hanawa T. and Teoh S. H. “Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials”, Review. Mater. Sci. Eng. C, 24: 753–760, (2004).
  • [19] Yang K., Ren Y., “Nickel-free austenitic stainless steels for medical applications” Sci Technol Adv Mater. 11: 014105, (2010).
  • [20] Talha M., Behera C.K, Sinha O.P., “A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications” Mater Sci Eng C , 33 : 3563–75, (2013).
  • [21] Li M., Yin T., Wang Y., Du F., Zou X., Gregersen H., Wang G., “Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro”, Mater Sci Eng C 43: 641–8, (2014).
  • [22] Akmal M., Khalid F.A., and Hussain M.A., “Interfacial Diffusion Reaction And Mechanical Characterization Of 316L Stainless Steel-Hydroxyapatite Functionally Graded Materials For Joint Prostheses”, Ceramics International, 41: 14458–14467, (2015).
  • [23] Hussain M. A., Maqbool A., Khalid F. A., Farooq M. U., Abidi I. H., Bakhsh N., Amin W., and Kim J. Y. “Improved Sinterability Of Hydroxyapatite Functionally Graded Materials Strengthened With SS316L And Cnts Fabricated By Pressureless Sintering”, Ceramics International, 41: 10125–10132, (2015).
  • [24] Kokubo T., Takadama H., “How Useful is SBF in Predicting in Vivo Bone Bioactivity”, Biomaterials, 27: 2907–2915, (2006).
  • [25] Tongsrı S.A. R., Mateepıthukdharm A.P.W. C., Pıyarattanatraı T., “Effect of Powder Mixture Conditions on Mechanical Properties of Sintered Al2O3-SS316L Composites under Vacuum Atmosphere”, Journal of Metals, Materials and Minerals, 17: 81–85, (2007).
  • [26] Panda S.S., Upadhyaya A., Agrawal D., “Effect of conventional and microwave sintering on the properties of yttria alumina garnet-dispersed austenitic stainless steel”, Metallurgıcal And Materıals Transactıons A, 37: 2253–2264, (2006).
  • [27] Obada D.O., Dauda E.T., Abifarin J.K., Dodoo-Arhin D. and Bansod N.D., “Mechanical properties of natural hydroxyapatite using low cold compaction pressure: Effect of sintering temperature”, Materials Chemistry and Physics, 239: 122099, (2020).
  • [28] Şenel M. C., Gürbüz M., “The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites”, Düzce University Journal of Science & Technology Research, 8: 1864–1876 (2020).
  • [29] Dadfar M., Fathi M.H., Karimzadeh F., Dadfar M.R., and Saatchi, A., “Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel”, Materials Letters, 61: 2343–2346, (2007).
  • [30] Ergun C., Doremus R., and Lanford W., “Interface Reaction/Diffusion In Hydroxylapatite-Coated SS316L And CoCrMo Alloys”, Acta Biomaterialia, 52: 4767–4772, (2004).
  • [31] Zhen Z., XiT.F., and Zheng Y.F., “A Review on in Vitro Corrosion Performance Test of Biodegradable Metallic Materials”, Transactions of Nonferrous Metals Society of China 23: 2283–2293, (2013).
  • [32] Oje A. M., Ogwu A. A., Rahman S. U., Oje A. I., andTsendzughul N., “Effect of Temperature Variation on The Corrosion Behaviour and Semiconducting Properties of The Passive Film Formed on Chromium Oxide Coatings Exposed To Saline Solution”, Corrosion Science, 154: 28–35, (2019).
  • [33] Robin A., Silva G., and Rosa J. L., "Corrosion behavior of HA-316L SS biocomposites in aqueous solutions", Materials Research, 16: 1254–1259, (2013).
  • [34] Balaji S., and Upadhyaya A., "Electrochemical behavior of sintered YAG dispersed 316L stainless steel composites", Materials Chemistry and Physics, 101: 310–316, (2007).
  • [35] Chen J., Tingting J., Xiangna L., Kai K., Fanggong C., and Sude M. “Characterization and Corrosion Resistance of a Composite Layered Double Hydroxides Film on Mg–4Zn Alloy in Hank’s Solution”, Materials Today Physics, 20:100474, (2021).
  • [36] Abdullah S. S., Balci E., Qader I. N. and Dagdelen F. “Assessment of Biocompatibility and Physical Properties of Ni–Ti–Zr–Nb Shape Memory Alloys” Transactions of The Indian Institute of Metals, 76: 1237–1242, (2023).
  • [37] Mohammed S. S., Balci E., Dagdelen F. and Saydam S. “Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys” Physics of Metals And Metallography, 123: 1427–1435, (2022).
  • [38] Okazaki Y., and Gotoh E., “Comparison of Metal Release From Various Metallic Biomaterials İn Vitro” Biomaterials, 26: 11–21, (2005).
  • [39] Madhan Kumar A., and Rajendran N., “Influence of Zirconia Nanoparticles on The Surface and Electrochemical Behaviour of Polypyrrole Nanocomposite Coated 316LSS in Simulated Body Fluid” Surface Coatings Technology, 213: 155–166 (2012).

Investigation of Corrosion and Bioactivity Behavior of 316L/HA Composites in Different Physiological Fluids

Year 2024, Volume: 27 Issue: 5, 1913 - 1921, 02.10.2024
https://doi.org/10.2339/politeknik.1312685

Abstract

In this study, SS316L/HA composites were produced by powder metallurgy method for biomedical applications; density, microstructure, hardness, corrosion resistance and bioactivity properties were investigated. 3%, 5% and 7% by weight of hydroxyapatite (HA) were added to the 316L matrix. With the increase of HA ratio, density and hardness decreased, while porosity increased. In XRD analysis, in addition to 316L and HA peaks, CaCr2O4 phase peaks were also observed. Corrosion tests were carried out in Ringer and Hank's physiological fluids, and the corrosion rate of the sample with 5% reinforcement was the lowest among composites. Bioactivity tests were carried out in simulated body fluid (SBF) for 7 and 14 days, and at the end of both periods, apatite layer consisting of spherical crystallites was observed on the sample surfaces.

Project Number

FDK-2019-8440

References

  • [1] Lin S., Xiong W., “Microstructure and abrasive behaviors of TiC-316L composites prepared by warm compaction and microwave sintering”, Adv Powder Technol., 23: 419–25, (2012).
  • [2] Guan D., He X., Zhang R., Li R., Qu X., “Tribological and corrosion properties of PM 316L matrix composites reinforced by in situ polymer-derived ceramics”, Vacuum, 148: 319–26, (2018).
  • [3] Liu X., Pagounis E., Hellman J., Lindroos V.K., “Influence of reinforcement particle size distribution on the mechanical behavior of a stainless steel/TiN composite”, Metall Mater Trans A, 31: 309–18, (2000).
  • [4] Auger J.M., Saunier S., Valdivieso F., “Characterisation of sintering of alumina matrix-stainless steel dispersion composite and interaction between chromium, carbon and alumina during powder metallurgy process”, Powder Metall., 54: 522–8, (2011).
  • [5] Tiwari S.K., Mishra T., Gunjan M.K., Bhattacharyya A.S., Singh T.B., and Singh R., “Development and characterization of sol-gel silica-alumina composite coatings on AISI 316L for implant applications”, Surf. Coatings Technol., 201: 7582–7588, (2007).
  • [6] Balamurugan A., Balossier G., Kannan S., Michel J. and Rajeswari S. “In vitro biological, chemical and electrochemical evaluation of titania reinforced hydroxyapatite sol-gel coatings on surgical grade 316L SS”, Mater. Sci. Eng., C 27: 162–171, (2007).
  • [7] Gopi D., Prakash V.C.A., Kavitha L., “Evaluation of hydroxyapatite coatings on borate passivated 316L SS in Ringer’s solution”, Mater Sci Eng C, 29: 955–8, (2009).
  • [8] Kannan S., Balamurugan A., Rajeswari S., “Electrochemical characterization of hydroxyapatite coatings on HNO 3 passivated 316L SS for implant applications”, Electrochim Acta., 50: 2065–72, (2005).
  • [9] Prem Ananth K., Nathanael AJ., Jose SP., Oh T.H., Mangalaraj D., Ballamurugan A.M.,, “Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties”, Appl Surf Sci , 353: 189–99, (2015).
  • [10] Garcia-Lobato M.A., Mtz-Enriquez A.I., Garcia C.R., Velazquez-Manzanares M., Avalos-Belmontes F., Ramos-Gonzalez R., Garcia-Cerda L.A. “Corrosion resistance and in vitro bioactivity of dense and porous titania coatings deposited on 316L SS by spraying method”, Appl Surf Sci., 484: 975–80, (2019).
  • [11] Srinivasan A., Rajendran N.,“Electrochemical Corrosion and In Vitro Bioactivity of SiO2:ZrO2-Coated 316L Stainless Steel in Simulated Body Fluid”, J Mater Eng Perform., 24 : 3056–67, (2015).
  • [12] Tiwari S.K., Adhikary J., Singh T.B., Singh R.,”Preparation and characterization of sol-gel derived yttria doped zirconia coatings on AISI 316L”, Thin Solid Films., 517: 4502–4508, (2009).
  • [13] Radwan M., Nygren M., Flodström K., Esmaelzadeh S., “Fabrication of crack-free SUS316L/Al2O3 functionally graded materials by spark plasma sintering” J Mater Sci., 46: 5807–14, (2011).
  • [14] Akmal M., Hussain M.A., Ikram H., Sattar T., Jameel S., Kim J.Y., Khalid F.A., Kim, J.W., “In-vitro electrochemical and bioactivity evaluation of SS316L reinforced hydroxyapatite functionally graded materials fabricated for biomedical implants” Ceram Int., 42: 3855–63, (2016).
  • [15] Mishina H., Inumaru Y., and Kaitoku K., “Fabrication of ZrO2/AISI316L Functionally Graded Materials For Joint Prostheses”, Materials Science and Engineering A, 475: 141–147, (2008).
  • [16] Ataollahi Oshkour A., Pramanik S., Mehrali M., Yau Y.H., Tarlochan F., Abu Osman N.A., “Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite”, J Mech Behav Biomed Mater , 49: 321–31, (2015).
  • [17] Lodhi M. J. K., Deen K. M., Greenlee-Wacker M. C. and Haider W."Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications", Addit. Manuf., 27: 8–19, (2019).
  • [18] Sumita M., Hanawa T. and Teoh S. H. “Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials”, Review. Mater. Sci. Eng. C, 24: 753–760, (2004).
  • [19] Yang K., Ren Y., “Nickel-free austenitic stainless steels for medical applications” Sci Technol Adv Mater. 11: 014105, (2010).
  • [20] Talha M., Behera C.K, Sinha O.P., “A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications” Mater Sci Eng C , 33 : 3563–75, (2013).
  • [21] Li M., Yin T., Wang Y., Du F., Zou X., Gregersen H., Wang G., “Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro”, Mater Sci Eng C 43: 641–8, (2014).
  • [22] Akmal M., Khalid F.A., and Hussain M.A., “Interfacial Diffusion Reaction And Mechanical Characterization Of 316L Stainless Steel-Hydroxyapatite Functionally Graded Materials For Joint Prostheses”, Ceramics International, 41: 14458–14467, (2015).
  • [23] Hussain M. A., Maqbool A., Khalid F. A., Farooq M. U., Abidi I. H., Bakhsh N., Amin W., and Kim J. Y. “Improved Sinterability Of Hydroxyapatite Functionally Graded Materials Strengthened With SS316L And Cnts Fabricated By Pressureless Sintering”, Ceramics International, 41: 10125–10132, (2015).
  • [24] Kokubo T., Takadama H., “How Useful is SBF in Predicting in Vivo Bone Bioactivity”, Biomaterials, 27: 2907–2915, (2006).
  • [25] Tongsrı S.A. R., Mateepıthukdharm A.P.W. C., Pıyarattanatraı T., “Effect of Powder Mixture Conditions on Mechanical Properties of Sintered Al2O3-SS316L Composites under Vacuum Atmosphere”, Journal of Metals, Materials and Minerals, 17: 81–85, (2007).
  • [26] Panda S.S., Upadhyaya A., Agrawal D., “Effect of conventional and microwave sintering on the properties of yttria alumina garnet-dispersed austenitic stainless steel”, Metallurgıcal And Materıals Transactıons A, 37: 2253–2264, (2006).
  • [27] Obada D.O., Dauda E.T., Abifarin J.K., Dodoo-Arhin D. and Bansod N.D., “Mechanical properties of natural hydroxyapatite using low cold compaction pressure: Effect of sintering temperature”, Materials Chemistry and Physics, 239: 122099, (2020).
  • [28] Şenel M. C., Gürbüz M., “The Influence of Particle Size and Reinforcement Rate of B4C on Mechanical and Microstructure Properties of Al-B4C Composites”, Düzce University Journal of Science & Technology Research, 8: 1864–1876 (2020).
  • [29] Dadfar M., Fathi M.H., Karimzadeh F., Dadfar M.R., and Saatchi, A., “Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel”, Materials Letters, 61: 2343–2346, (2007).
  • [30] Ergun C., Doremus R., and Lanford W., “Interface Reaction/Diffusion In Hydroxylapatite-Coated SS316L And CoCrMo Alloys”, Acta Biomaterialia, 52: 4767–4772, (2004).
  • [31] Zhen Z., XiT.F., and Zheng Y.F., “A Review on in Vitro Corrosion Performance Test of Biodegradable Metallic Materials”, Transactions of Nonferrous Metals Society of China 23: 2283–2293, (2013).
  • [32] Oje A. M., Ogwu A. A., Rahman S. U., Oje A. I., andTsendzughul N., “Effect of Temperature Variation on The Corrosion Behaviour and Semiconducting Properties of The Passive Film Formed on Chromium Oxide Coatings Exposed To Saline Solution”, Corrosion Science, 154: 28–35, (2019).
  • [33] Robin A., Silva G., and Rosa J. L., "Corrosion behavior of HA-316L SS biocomposites in aqueous solutions", Materials Research, 16: 1254–1259, (2013).
  • [34] Balaji S., and Upadhyaya A., "Electrochemical behavior of sintered YAG dispersed 316L stainless steel composites", Materials Chemistry and Physics, 101: 310–316, (2007).
  • [35] Chen J., Tingting J., Xiangna L., Kai K., Fanggong C., and Sude M. “Characterization and Corrosion Resistance of a Composite Layered Double Hydroxides Film on Mg–4Zn Alloy in Hank’s Solution”, Materials Today Physics, 20:100474, (2021).
  • [36] Abdullah S. S., Balci E., Qader I. N. and Dagdelen F. “Assessment of Biocompatibility and Physical Properties of Ni–Ti–Zr–Nb Shape Memory Alloys” Transactions of The Indian Institute of Metals, 76: 1237–1242, (2023).
  • [37] Mohammed S. S., Balci E., Dagdelen F. and Saydam S. “Comparison of Thermodynamic Parameters and Corrosion Behaviors of Ti50Ni25Nb25 and Ti50Ni25Ta25 Shape Memory Alloys” Physics of Metals And Metallography, 123: 1427–1435, (2022).
  • [38] Okazaki Y., and Gotoh E., “Comparison of Metal Release From Various Metallic Biomaterials İn Vitro” Biomaterials, 26: 11–21, (2005).
  • [39] Madhan Kumar A., and Rajendran N., “Influence of Zirconia Nanoparticles on The Surface and Electrochemical Behaviour of Polypyrrole Nanocomposite Coated 316LSS in Simulated Body Fluid” Surface Coatings Technology, 213: 155–166 (2012).
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Biomaterials in Biomedical Engineering, Material Design and Behaviors
Journal Section Research Article
Authors

Özlem Canpolat 0000-0002-9336-3040

Aykut Çanakçı 0000-0001-5244-6467

Project Number FDK-2019-8440
Early Pub Date January 10, 2024
Publication Date October 2, 2024
Submission Date June 10, 2023
Published in Issue Year 2024 Volume: 27 Issue: 5

Cite

APA Canpolat, Ö., & Çanakçı, A. (2024). 316L/HA Kompozitlerinin Farklı Fizyolojik Sıvılardaki Korozyon ve Biyoaktivite Davranışının Araştırılması. Politeknik Dergisi, 27(5), 1913-1921. https://doi.org/10.2339/politeknik.1312685
AMA Canpolat Ö, Çanakçı A. 316L/HA Kompozitlerinin Farklı Fizyolojik Sıvılardaki Korozyon ve Biyoaktivite Davranışının Araştırılması. Politeknik Dergisi. October 2024;27(5):1913-1921. doi:10.2339/politeknik.1312685
Chicago Canpolat, Özlem, and Aykut Çanakçı. “316L/HA Kompozitlerinin Farklı Fizyolojik Sıvılardaki Korozyon Ve Biyoaktivite Davranışının Araştırılması”. Politeknik Dergisi 27, no. 5 (October 2024): 1913-21. https://doi.org/10.2339/politeknik.1312685.
EndNote Canpolat Ö, Çanakçı A (October 1, 2024) 316L/HA Kompozitlerinin Farklı Fizyolojik Sıvılardaki Korozyon ve Biyoaktivite Davranışının Araştırılması. Politeknik Dergisi 27 5 1913–1921.
IEEE Ö. Canpolat and A. Çanakçı, “316L/HA Kompozitlerinin Farklı Fizyolojik Sıvılardaki Korozyon ve Biyoaktivite Davranışının Araştırılması”, Politeknik Dergisi, vol. 27, no. 5, pp. 1913–1921, 2024, doi: 10.2339/politeknik.1312685.
ISNAD Canpolat, Özlem - Çanakçı, Aykut. “316L/HA Kompozitlerinin Farklı Fizyolojik Sıvılardaki Korozyon Ve Biyoaktivite Davranışının Araştırılması”. Politeknik Dergisi 27/5 (October 2024), 1913-1921. https://doi.org/10.2339/politeknik.1312685.
JAMA Canpolat Ö, Çanakçı A. 316L/HA Kompozitlerinin Farklı Fizyolojik Sıvılardaki Korozyon ve Biyoaktivite Davranışının Araştırılması. Politeknik Dergisi. 2024;27:1913–1921.
MLA Canpolat, Özlem and Aykut Çanakçı. “316L/HA Kompozitlerinin Farklı Fizyolojik Sıvılardaki Korozyon Ve Biyoaktivite Davranışının Araştırılması”. Politeknik Dergisi, vol. 27, no. 5, 2024, pp. 1913-21, doi:10.2339/politeknik.1312685.
Vancouver Canpolat Ö, Çanakçı A. 316L/HA Kompozitlerinin Farklı Fizyolojik Sıvılardaki Korozyon ve Biyoaktivite Davranışının Araştırılması. Politeknik Dergisi. 2024;27(5):1913-21.