Research Article
BibTex RIS Cite

Elektrocerrahi için GaN Tabanlı Yüksek Frekanslı Bir İnverter Tasarımı

Year 2025, Volume: 28 Issue: 1, 67 - 76
https://doi.org/10.2339/politeknik.1424645

Abstract

Elektrocerrahi, yüksek enerji ve yüksek frekanslı elektrik akımı kullanarak kesme ve pıhtılaşma işlemlerini gerçekleştirir. Cerrahi müdahalelerde kanamayı azaltır, operasyon süresini kısaltır ve iyileşme sürecini hızlandırır. Bu çalışmada elektrocerrahide kullanılmak üzere GaN tabanlı yüksek frekanslı tam köprü DE sınıfı rezonans inverter tasarımı önerilmektedir. Önerilen dönüştürücü yüksek frekanslarda AC gerilim sağlamakta ve anahtarlar düşük gerilim stresinde ZVS (Sıfır Gerilim Anahtarlama) ile çalışmaktadır. Ayrıca GaN elemanlarının kullanılması yüksek verim ve yüksek güç yoğunluğu sağlamaktadır. Elektrocerrahinin üç farklı kesme modu için çalışma frekansı 500 kHz olarak seçilmiştir. Yüksek frekanslı DE sınıfı rezonans inverterin teknik analiz ve simülasyon çalışmalarının ardından bir deney düzeneği tasarlanmış ve laboratuvar ortamında uygulanmıştır. Değişken bir yük aralığında verimlilik performansı analiz edilmiştir. Son olarak, saf kesme, harmanlama ve koagülasyon modları, gerçek dokuyu simüle eden patates - tavuk göğsü - karaciğer gibi farklı yükler üzerinde test edilmiştir. Saf kesme modu için patates yükünde, çıkış gerilimi 39,9 V ve çıkış akımı 0,7 A iken verimlilik %35'tir.

Ethical Statement

Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler.

Supporting Institution

Pamukkale Üniversitesi

Project Number

2022FEBE042

Thanks

Bu çalışma Pamukkale Üniversitesi tarafından 2022FEBE042 proje numarasıyla desteklenmektedir.

References

  • [1] Ramachandran M., & Aronson J. K., “John Marshall’s first description of surgical electrocautery,” Journal of the Royal Society of Medicine, 104(9): 355-360 (2011). doi:10.1258/jrsm.2011.11k028.
  • [2] Bao C. and Mazumder S. K., "GaN-HEMT Based Very-High-Frequency AC Power Supply for Electrosurgery", 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 220-225, (2021). doi:10.1109/APEC42165.2021.9487352.
  • [3] Eggleston J. L., & Maltzahn W. W., “Electrosurgical Devices”, (ed: Bronzino J. D.), Medical Devices and Systems, Taylor & Francis Group, 63: 2-9, Boca Raton (2006).
  • [4] Ozdemir U., “Is electrosurgery a revolution? Mechanism, benefits, complications and precautions”, J Pharm Technol, 1(3): 60–64, (2020). doi: 10.37662/jpt.2021.8.
  • [5] Petrova G., Yanev G., and Spasov G., "Arduino-based module for return electrode contact quality monitoring in the electrosurgical instruments," 2017 XXVI International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 1-4, (2017). doi: 10.1109/ET.2017.8124379.
  • [6] Tarinc H. and Cetin S., "Efficiency Performance Evaluation of A Second Stage GaN Based High Frequency Inverter for Electrosurgery," 2023 14th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 1-5, (2023). doi: 10.1109/ELECO60389.2023.10416039.
  • [7] “User’s Guide Force FXTM-C Electrosurgical Generator with Instant ResponseTM Technology.” 2000. Accessed: Aug, 23, 2023. [Online]. Available: http://www.frankshospitalworkshop.com. [8] Bao C. and Mazumder S. K., "Multiresonant-Frequency Filter for an Electrosurgery Inverter," IEEE Transactions on Power Electronics, 37(6): 6242-6246, (2022). doi: 10.1109/TPEL.2021.3137525.
  • [9] Advincula A. P, Wang K. “The evolutionary state of electrosurgery: where are we now?” Current Opinion Obstetrics and Gynecology. 20(4): 353-8 (2008). doi: 10.1097/GCO.0b013e3283073ab7.
  • [10] Schneider B. and Abatti P. J., "Electrical Characteristics of the Sparks Produced by Electrosurgical Devices," IEEE Transactions on Biomedical Engineering, 55(2): 589-593, (2008). doi: 10.1109/TBME.2007.903525.
  • [11] Gu L., & Wang L., “Two-stage wide-output high-frequency-voltage inverter for electrosurgical generator,” IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 1-6, (2021). doi: 10.1109/IECON48115.2021.9589891.
  • [12] Corak İ. & Cetin S., “8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems”, Journal of Polytechnic, 27(2): 461–468, (2024). doi: 10.2339/politeknik.1118158.
  • [13] Jensen S., Corradini L., Rodríguez M., & Maksimovic D., “Modeling and digital control of LCLC resonant inverter with varying load”, 2011 IEEE Energy Conversion Congress and Exposition, (2011). doi: 10.1109/ECCE.2011.6064288.
  • [14] Park N. -J., Lee D. -Y. and Hyun D. -S., "A Power-Control Scheme With Constant Switching Frequency in Class-D Inverter for Induction-Heating Jar Application," IEEE Transactions on Industrial Electronics, 54 (3): 1252-1260 (2007). doi: 10.1109/TIE.2007.892741.
  • [15] Jittakort J., Nimsontorn J., Sirboonrueng B., Chua-on S., Pinpathomrat P. and Chudjuarjeen S., "A Class D Voltage Source Resonant Inverter for Ultrasonic Cleaning Application," 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST), Phuket, Thailand, 1-4, (2018). doi: 10.1109/ICEAST.2018.8434484.
  • [16] Tebianian H., Salami Y., Jeyasurya B. and Quaicoe J. E., "A 13.56-MHz Full-Bridge Class-D ZVS Inverter With Dynamic Dead-Time Control for Wireless Power Transfer Systems," in IEEE Transactions on Industrial Electronics, 67(2): 1487-1497, (2020). doi: 10.1109/TIE.2018.2890505.
  • [17] Kazimierczuk M. K., and Czarkowski D., “Resonant Power Converters”, John Wiley & Sons, 141-404, Canada, (2011).
  • [18] Mazumder S. K., Bao C., El-Kebir H., Lee Y., Bentsman J., and Berlin R., "Electrosurgery Power Electronics: A Revolution in the Making," 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 692-698, (2023). doi: 10.1109/APEC43580.2023.10131328.
  • [19] Ashique RH, Shihavuddin ASM, Khan MM, Islam A, Ahmed J, Arif MSB, Maruf MH, Al Mansur A, Haq MAu, and Siddiquee A, "An Analysis and Modeling of the Class-E Inverter for ZVS/ZVDS at Any Duty Ratio with High Input Ripple Current," Electronics, 10(11): 1312, (2021). https://doi.org/10.3390/electronics10111312.
  • [20] Sekiya H., Miyahara R., and Kazimierczuk M. K., "Design of class-DE amplifier with linear and nonlinear shunt capacitances for 25 % duty ratio," 2009 IEEE International Symposium on Circuits and Systems (ISCAS), Taipei, Taiwan, 2870-2873, (2009). doi: 10.1109/ISCAS.2009.5118401.
  • [21] Kondo T., Inaba T., Sakai Y., and Koizumi H., "An Analysis of Class DE Voltage-Source Parallel Resonant Inverter," 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 4114-4121, (2018). doi: 10.23919/IPEC.2018.8507504.
  • [22] Wang P, Li Q, Liu Y, Yuan W, Yan K, Pang Z. "A Novel Impedance Matching of Class DE Inverter for High Efficiency, Wide Impedance WPT System", Electronics, 13(5): 959, (2024). https://doi.org/10.3390/electronics13050959.
  • [23] Sanajit N. & Meesrisuk W., "A High-Frequency PWM Half-Bridge Inverter for Electrosurgical Cutting Applications," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea (South), 827-830, (2018). doi: 10.23919/ICEMS.2018.8549089.
  • [24] Liu L., Li Y. & Gu L., "Multiphase Interleaved Reconfigurable High-Frequency-Voltage Inverter for Electrosurgical Generator," 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 1-5, (2022). doi: 10.1109/ECCE50734.2022.9947632.
  • [25] Husna H, K., & Nirmal, D. "A Review of GaN HEMT BroadBand Power Amplifiers," AEU - International Journal of Electronics and Communications, 153040, (2020). doi:10.1016/j.aeue.2019.153040.
  • [26] Hu J., Zhang Y., Sun M., and Piedra D., Chowdhury, N., & Palacios, T. “Materials and processing issues in vertical GaN power electronics” Materials Science in Semiconductor Processing, 78: 75–84, (2018). doi:10.1016/j.mssp.2017.09.033.
  • [27] Khan S. A., Wang M., and Chaturvedi S., "Analog Resistive Sensing Control for GaN FET’s based Totem Pole PFC," 2023 IEEE Design Methodologies Conference (DMC), Miami, FL, USA, 1-5, (2023). doi: 10.1109/DMC58182.2023.10412551.
  • [28] Yang S., Han S., Sheng K. & Chen K. J., "Dynamic On-Resistance in GaN Power Devices: Mechanisms, Characterizations, and Modeling," in IEEE Journal of Emerging and Selected Topics in Power Electronics, 7 (3): 1425-1439, (2019). doi: 10.1109/JESTPE.2019.2925117.
  • [29] Bılgılı A. K., Hekin E., Ozturk M., Ozcelik S., & Ozbay E., “Mosaic Defect and AFM Study on GaN/AlInN/AlN/Sapphire HEMT Structures”, Journal of Polytechnic, 25(4): 1613–1619, (2022). doi: 10.2339/politeknik.787700.
  • [30] Tugrul D., Cakmak H., Ozbay E., & Imer B., “Development of AZO TCOs with ALD for HEMT and HJSC Solar Cell Applications”, Journal of Polytechnic, 26,(1): 209–214, (2023). doi: 10.2339/politeknik.873160.

Design of A GaN Based High Frequency Inverter for Electrosurgery

Year 2025, Volume: 28 Issue: 1, 67 - 76
https://doi.org/10.2339/politeknik.1424645

Abstract

Electrosurgery performs cutting and coagulation procedures using high energy and high frequency electric current. It reduces bleeding during surgical interventions, shortens the operation time and accelerates the healing process. In this study, a GaN based high frequency full bridge class DE resonant inverter design is proposed for use in electrosurgery. The proposed inverter provides AC voltage at high frequencies and the switches operate with ZVS (Zero Voltage Switching) at low voltage stress. In addition, the use of GaN elements provides high efficiency and high-power density. The operating frequency is selected as 500 kHz for three different cutting modes of electrosurgery. After the technical analysis and simulation studies of the high frequency class DE resonant inverter, an experimental setup was designed and implemented in a laboratory environment. The efficiency performance over a variable load range is analysed. Finally, pure cutting, blend and coagulation modes are tested on the different loads, potato - chicken breast - liver, simulating real tissue. On the potato load for pure cutting mode, the output voltage is 39.9 V and the output current is 0.7 A while an efficiency of 35%.

Ethical Statement

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Supporting Institution

Pamukkale University

Project Number

2022FEBE042

Thanks

This study is support by Pamukkale University under grant number 2022FEBE042.

References

  • [1] Ramachandran M., & Aronson J. K., “John Marshall’s first description of surgical electrocautery,” Journal of the Royal Society of Medicine, 104(9): 355-360 (2011). doi:10.1258/jrsm.2011.11k028.
  • [2] Bao C. and Mazumder S. K., "GaN-HEMT Based Very-High-Frequency AC Power Supply for Electrosurgery", 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 220-225, (2021). doi:10.1109/APEC42165.2021.9487352.
  • [3] Eggleston J. L., & Maltzahn W. W., “Electrosurgical Devices”, (ed: Bronzino J. D.), Medical Devices and Systems, Taylor & Francis Group, 63: 2-9, Boca Raton (2006).
  • [4] Ozdemir U., “Is electrosurgery a revolution? Mechanism, benefits, complications and precautions”, J Pharm Technol, 1(3): 60–64, (2020). doi: 10.37662/jpt.2021.8.
  • [5] Petrova G., Yanev G., and Spasov G., "Arduino-based module for return electrode contact quality monitoring in the electrosurgical instruments," 2017 XXVI International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 1-4, (2017). doi: 10.1109/ET.2017.8124379.
  • [6] Tarinc H. and Cetin S., "Efficiency Performance Evaluation of A Second Stage GaN Based High Frequency Inverter for Electrosurgery," 2023 14th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 1-5, (2023). doi: 10.1109/ELECO60389.2023.10416039.
  • [7] “User’s Guide Force FXTM-C Electrosurgical Generator with Instant ResponseTM Technology.” 2000. Accessed: Aug, 23, 2023. [Online]. Available: http://www.frankshospitalworkshop.com. [8] Bao C. and Mazumder S. K., "Multiresonant-Frequency Filter for an Electrosurgery Inverter," IEEE Transactions on Power Electronics, 37(6): 6242-6246, (2022). doi: 10.1109/TPEL.2021.3137525.
  • [9] Advincula A. P, Wang K. “The evolutionary state of electrosurgery: where are we now?” Current Opinion Obstetrics and Gynecology. 20(4): 353-8 (2008). doi: 10.1097/GCO.0b013e3283073ab7.
  • [10] Schneider B. and Abatti P. J., "Electrical Characteristics of the Sparks Produced by Electrosurgical Devices," IEEE Transactions on Biomedical Engineering, 55(2): 589-593, (2008). doi: 10.1109/TBME.2007.903525.
  • [11] Gu L., & Wang L., “Two-stage wide-output high-frequency-voltage inverter for electrosurgical generator,” IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 1-6, (2021). doi: 10.1109/IECON48115.2021.9589891.
  • [12] Corak İ. & Cetin S., “8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems”, Journal of Polytechnic, 27(2): 461–468, (2024). doi: 10.2339/politeknik.1118158.
  • [13] Jensen S., Corradini L., Rodríguez M., & Maksimovic D., “Modeling and digital control of LCLC resonant inverter with varying load”, 2011 IEEE Energy Conversion Congress and Exposition, (2011). doi: 10.1109/ECCE.2011.6064288.
  • [14] Park N. -J., Lee D. -Y. and Hyun D. -S., "A Power-Control Scheme With Constant Switching Frequency in Class-D Inverter for Induction-Heating Jar Application," IEEE Transactions on Industrial Electronics, 54 (3): 1252-1260 (2007). doi: 10.1109/TIE.2007.892741.
  • [15] Jittakort J., Nimsontorn J., Sirboonrueng B., Chua-on S., Pinpathomrat P. and Chudjuarjeen S., "A Class D Voltage Source Resonant Inverter for Ultrasonic Cleaning Application," 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST), Phuket, Thailand, 1-4, (2018). doi: 10.1109/ICEAST.2018.8434484.
  • [16] Tebianian H., Salami Y., Jeyasurya B. and Quaicoe J. E., "A 13.56-MHz Full-Bridge Class-D ZVS Inverter With Dynamic Dead-Time Control for Wireless Power Transfer Systems," in IEEE Transactions on Industrial Electronics, 67(2): 1487-1497, (2020). doi: 10.1109/TIE.2018.2890505.
  • [17] Kazimierczuk M. K., and Czarkowski D., “Resonant Power Converters”, John Wiley & Sons, 141-404, Canada, (2011).
  • [18] Mazumder S. K., Bao C., El-Kebir H., Lee Y., Bentsman J., and Berlin R., "Electrosurgery Power Electronics: A Revolution in the Making," 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 692-698, (2023). doi: 10.1109/APEC43580.2023.10131328.
  • [19] Ashique RH, Shihavuddin ASM, Khan MM, Islam A, Ahmed J, Arif MSB, Maruf MH, Al Mansur A, Haq MAu, and Siddiquee A, "An Analysis and Modeling of the Class-E Inverter for ZVS/ZVDS at Any Duty Ratio with High Input Ripple Current," Electronics, 10(11): 1312, (2021). https://doi.org/10.3390/electronics10111312.
  • [20] Sekiya H., Miyahara R., and Kazimierczuk M. K., "Design of class-DE amplifier with linear and nonlinear shunt capacitances for 25 % duty ratio," 2009 IEEE International Symposium on Circuits and Systems (ISCAS), Taipei, Taiwan, 2870-2873, (2009). doi: 10.1109/ISCAS.2009.5118401.
  • [21] Kondo T., Inaba T., Sakai Y., and Koizumi H., "An Analysis of Class DE Voltage-Source Parallel Resonant Inverter," 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 4114-4121, (2018). doi: 10.23919/IPEC.2018.8507504.
  • [22] Wang P, Li Q, Liu Y, Yuan W, Yan K, Pang Z. "A Novel Impedance Matching of Class DE Inverter for High Efficiency, Wide Impedance WPT System", Electronics, 13(5): 959, (2024). https://doi.org/10.3390/electronics13050959.
  • [23] Sanajit N. & Meesrisuk W., "A High-Frequency PWM Half-Bridge Inverter for Electrosurgical Cutting Applications," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea (South), 827-830, (2018). doi: 10.23919/ICEMS.2018.8549089.
  • [24] Liu L., Li Y. & Gu L., "Multiphase Interleaved Reconfigurable High-Frequency-Voltage Inverter for Electrosurgical Generator," 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 1-5, (2022). doi: 10.1109/ECCE50734.2022.9947632.
  • [25] Husna H, K., & Nirmal, D. "A Review of GaN HEMT BroadBand Power Amplifiers," AEU - International Journal of Electronics and Communications, 153040, (2020). doi:10.1016/j.aeue.2019.153040.
  • [26] Hu J., Zhang Y., Sun M., and Piedra D., Chowdhury, N., & Palacios, T. “Materials and processing issues in vertical GaN power electronics” Materials Science in Semiconductor Processing, 78: 75–84, (2018). doi:10.1016/j.mssp.2017.09.033.
  • [27] Khan S. A., Wang M., and Chaturvedi S., "Analog Resistive Sensing Control for GaN FET’s based Totem Pole PFC," 2023 IEEE Design Methodologies Conference (DMC), Miami, FL, USA, 1-5, (2023). doi: 10.1109/DMC58182.2023.10412551.
  • [28] Yang S., Han S., Sheng K. & Chen K. J., "Dynamic On-Resistance in GaN Power Devices: Mechanisms, Characterizations, and Modeling," in IEEE Journal of Emerging and Selected Topics in Power Electronics, 7 (3): 1425-1439, (2019). doi: 10.1109/JESTPE.2019.2925117.
  • [29] Bılgılı A. K., Hekin E., Ozturk M., Ozcelik S., & Ozbay E., “Mosaic Defect and AFM Study on GaN/AlInN/AlN/Sapphire HEMT Structures”, Journal of Polytechnic, 25(4): 1613–1619, (2022). doi: 10.2339/politeknik.787700.
  • [30] Tugrul D., Cakmak H., Ozbay E., & Imer B., “Development of AZO TCOs with ALD for HEMT and HJSC Solar Cell Applications”, Journal of Polytechnic, 26,(1): 209–214, (2023). doi: 10.2339/politeknik.873160.
There are 29 citations in total.

Details

Primary Language English
Subjects Medical Devices
Journal Section Research Article
Authors

Hale Tarınç 0000-0001-6217-2041

Sevilay Çetin 0000-0002-9747-4821

Project Number 2022FEBE042
Early Pub Date May 20, 2024
Publication Date
Submission Date January 23, 2024
Acceptance Date April 15, 2024
Published in Issue Year 2025 Volume: 28 Issue: 1

Cite

APA Tarınç, H., & Çetin, S. (n.d.). Design of A GaN Based High Frequency Inverter for Electrosurgery. Politeknik Dergisi, 28(1), 67-76. https://doi.org/10.2339/politeknik.1424645
AMA Tarınç H, Çetin S. Design of A GaN Based High Frequency Inverter for Electrosurgery. Politeknik Dergisi. 28(1):67-76. doi:10.2339/politeknik.1424645
Chicago Tarınç, Hale, and Sevilay Çetin. “Design of A GaN Based High Frequency Inverter for Electrosurgery”. Politeknik Dergisi 28, no. 1 n.d.: 67-76. https://doi.org/10.2339/politeknik.1424645.
EndNote Tarınç H, Çetin S Design of A GaN Based High Frequency Inverter for Electrosurgery. Politeknik Dergisi 28 1 67–76.
IEEE H. Tarınç and S. Çetin, “Design of A GaN Based High Frequency Inverter for Electrosurgery”, Politeknik Dergisi, vol. 28, no. 1, pp. 67–76, doi: 10.2339/politeknik.1424645.
ISNAD Tarınç, Hale - Çetin, Sevilay. “Design of A GaN Based High Frequency Inverter for Electrosurgery”. Politeknik Dergisi 28/1 (n.d.), 67-76. https://doi.org/10.2339/politeknik.1424645.
JAMA Tarınç H, Çetin S. Design of A GaN Based High Frequency Inverter for Electrosurgery. Politeknik Dergisi.;28:67–76.
MLA Tarınç, Hale and Sevilay Çetin. “Design of A GaN Based High Frequency Inverter for Electrosurgery”. Politeknik Dergisi, vol. 28, no. 1, pp. 67-76, doi:10.2339/politeknik.1424645.
Vancouver Tarınç H, Çetin S. Design of A GaN Based High Frequency Inverter for Electrosurgery. Politeknik Dergisi. 28(1):67-76.