Research Article
BibTex RIS Cite

Design and Additive Manufacturing of Nerve Guide Conduits Using Triple Periodic Minimal Surface Structures

Year 2025, Volume: 28 Issue: 1, 267 - 281
https://doi.org/10.2339/politeknik.1470738

Abstract

Scaffold design is a key study area in tissue engineering. A scaffold is a three-dimensional framework that provides temporary support for the formation of new tissue before being implanted with isolated cells. The aim of tissue engineering scaffolds is to be colonized by cells. To ensure sufficient tissue growth, scaffolds need to transmit the necessary chemical and physical signals. The design of the scaffold determines its functionality. The design and manufacturing of tissue engineering scaffolds is a highly complex procedure. Scaffolds must have the necessary qualities to create an optimal architecture for cell growth, proliferation, and differentiation in order to form tissue. However, constrained structural designs and outdated manufacturing procedures impede the enhancement of scaffold qualities. To address these restrictions, researchers are merging computer-aided scaffold design with 3D printing processes during production. This method permits the design and manufacture of scaffolds with extremely intricate microstructures. The literature shows that computer-aided design combined with 3D printing technology is often utilized to design and manufacture nerve guide conduits for nerve regeneration. In this study, three different nerve guide conduit structures were designed and produced. Two of them are based on triple periodic minimal surfaces derived from Gyroid, schwarz. Although triple periodic minimal surfaces used as the basis for scaffold designs offer promising advantages for tissue engineering applications, limited information is available regarding their manufacturability. The designs created in this study, as well as their fabrication, will add to the literature on the manufacturability of triple periodic minimum surfaces.

References

  • [1] Gao, S. vd.,“3D-bioprinted GelMA nerve guide conduits promoted peripheral nerve regeneration by inducing trans-differentiation of MSCs into SCLCs via PIEZO1/YAP axis”, Materials Today Advances,17, 100325. (2023).
  • [2] Dadacı, Mehmet, “Biobozunur “Elektrospun kaprolakton” Sinir Kılavuz Kanallarının Periferik Sinir Sistemi Rejenerasyonlarında Etkinliğinin Değerlendirilmesi”, Tıpta Uzmanlık Tezi, Hacettepe Üniversitesi, (2007).
  • [3] Vijayavenkataraman, S., Zhang, S., Thaharah, S., Sriram, G., Lu, W. F., & Fuh, J. Y. H., “Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair”, Polymers,10(7), 753. (2018).
  • [4] Wan, T., Wang, Y. L., Zhang, F. S., Zhang, X. M., Zhang, Y. C., Jiang, H. R. & Zhang, P. X., “The porous structure of peripheral nerve guide conduits: features, fabrication, and implications for peripheral nerve regeneration”, International Journal of Molecular Sciences, 24(18), 14132, (2023).
  • [5] Li, X., Yang, W., Xie, H., Wang, J., Zhang, L., Wang, Z., & Wang, L., “CNT/sericin conductive nerve guide conduit promotes functional recovery of transected peripheral nerve injury in a rat model”, ACS applied materials & interfaces, 12(33), 36860-36872, (2020).
  • [6] Ma, Y., Wang, H., Wang, Q., Cao, X., & Gao, H., “Piezoelectric conduit combined with multi-channel conductive scaffold for peripheral nerve regeneration”, Chemical Engineering Journal, 452, 139424, (2023).
  • [7] Ye, W., Li, H., Yu, K., Xie, C., Wang, P., Zheng, Y.& Gao, Q., “3D printing of gelatin methacrylate-based nerve guide conduits with multiple channels”, Materials & Design, 192, 108757, (2020).
  • [8] Shen, J., Wang, J., Liu, X., Sun, Y., Yin, A., Chai, Y.& Zheng, X., “In situ prevascularization strategy with three-dimensional porous conduits for neural tissue engineering”, ACS Applied Materials & Interfaces, 13(43), 50785-50801, (2021).
  • [9] Zheng, T., Wu, L., Xu, J., Sun, S., Guan, W., Han, Q., ... & Li, G., “YR/DFO@ DCNT functionalized anisotropic micro/nano composite topography scaffolds for accelerating long-distance peripheral nerve regeneration”, Composites Part B: Engineering, 246, 110242, (2022).
  • [10] Namhongsa, M., Daranarong, D., Sriyai, M., Molloy, R., Ross, S., Ross, G. M.& Punyodom, W., “Surface-modified polypyrrole-coated PLCL and PLGA nerve guide conduits fabricated by 3D printing and electrospinning” Biomacromolecules, 23(11), 4532-4546, (2022).
  • [11] Top, N., Gökçe, H & Şahin, İ., “Additive Manufacturing of Bio-Inspired Microstructures for Bone Tissue Engineering”, Experimental Techniques, 47(6), 1213-1227, (2023).
  • [12] Ataollahi, S., “A review on additive manufacturing of lattice structures in tissue engineering”, Bioprinting, e00304, (2023).
  • [13] Jia, Z., Xu, X., Zhu, D., & Zheng, Y., “Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare”, Progress in Materials Science, 134, 101072, (2023).
  • [14] Wei, Q., Zhou, J., An, Y., Li, M., Zhang, J., & Yang, S., “Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review”, International Journal of Biological Macromolecules, 232, 123450, (2023).
  • [15] Mota, C., Puppi, D., Chiellini, F., & Chiellini, E., “Additive manufacturing techniques for the production of tissue engineering constructs”, Journal of tissue engineering and regenerative medicine, 9(3), 174-190, (2015).
  • [16] Rahman, M., Mahady Dip, T., Padhye, R., & Houshyar, S., “Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration”, Journal of Biomedical Materials Research Part A, 111(12), 1916-1950, (2023).
  • [17] Stocco, E., Barbon, S., Emmi, A., Tiengo, C., Macchi, V., De Caro, R., & Porzionato, A., “Bridging gaps in peripheral nerves: from current strategies to future perspectives in conduit design”, International Journal of Molecular Sciences, 24(11), 9170, (2023).
  • [18] Hanks, B., Berthel, J., Frecker, M., & Simpson, T. W., “Mechanical properties of additively manufactured metal lattice structures: Data review and design interface”, Additive Manufacturing, 35, 101301, (2020).
  • [19] Feng, J., Fu, J., Yao, X., & He, Y., “Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications”, International Journal of Extreme Manufacturing, 4(2), 022001, (2022).
  • [20] Top, N., Şahin, İ., & Gökçe, H., “The Mechanical Properties of Functionally Graded Lattice Structures Derived Using Computer-Aided Design for Additive Manufacturing”, Applied Sciences, 13(21), 11667, (2023).
  • [21] Rajagopalan, S., & Robb, R. A., “Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds”, Medical image analysis, 10(5), 693-712, (2006).
  • [22] Gan, X., Wang, J., Liu, Z., Zeng, M., Wang, Q., & Cheng, Z., “Numerical Study on Thermal Hydraulic and Flow-Induced Noise in Triply Periodic Minimal Surface (TPMS) Conduits”, ASME Journal of Heat and Mass Transfer, 146(4), (2024).
  • [23] Chen, W., Tang, X., Chu, X., Yang, Y., Xu, W., Fu, D., & Zhou, W., “Impact of catalyst carrier with TPMS structures on hydrogen production by methanol reforming”, International Journal of Hydrogen Energy, 58, 1177-1189, (2024).
  • [24] Zeng, C., Wang, W., Hai, K., & Ma, S., “Lightweight airborne TPMS-filled reflective mirror design for low thermal deformation”, Composite Structures, 327, 117665, (2024).
  • [25] Zhang, S., “Computational Design and Optimization of Scaffolds for Tissue Engineering Application”, Doctoral dissertation, National University of Singapore (Singapore), (2018).
  • [26] Rutkowski, G. E., and Heath, C. A., “Development of a bioartificial nerve graft. II. nerve regeneration in vitro”, Biotechnol. Prog., 18, 373–379, (2002).
  • [27] Tian, L., Prabhakaran, M. P., & Ramakrishna, S., “Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules”, Regenerative biomaterials, 2(1), 31-45, (2015).
  • [28] Yeranee, K., & Rao, Y., “Heat transfer and pressure loss of turbulent flow in a wedge-shaped cooling channel with different types of triply periodic minimal surfaces”, ASME Journal of Heat and Mass Transfer, 145(9), 093901, (2023).
  • [29] Layani, M., Wang, X., & Magdassi, S., “Novel materials for 3D printing by photopolymerization”, Advanced Materials, 30(41), 1706344, (2018).
  • [30] Yu, W., Zhao, W., Zhu, C., Zhang, X., Ye, D., Zhang, W.,& Zhang, Z., “Sciatic nerve regeneration in rats by a promising electrospun collagen/poly (ε-caprolactone) nerve conduit with tailored degradation rate”, BMC neuroscience, 12, 1-14, (2011).
  • [31] Gan, L., Zhao, L., Zhao, Y., Li, K., Tong, Z., Yi, L., ... & Chen, Y., “Cellulose/soy protein composite-based nerve guide conduits with designed microstructure for peripheral nerve regeneration”, Journal of neural engineering, 13(5), 056019, (2016).
  • [32] Zhu, Y., Wang, A., Patel, S., Kurpinski, K., Diao, E., Bao, X., & Li, S., “Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration”, Tissue Engineering Part C: Methods, 17(7), 705-715, (2011).
  • [33] Zeng, C. G., Xiong, Y., Xie, G., Dong, P., & Quan, D., “Fabrication and evaluation of PLLA multiconduit conduits with nanofibrous microstructure for the differentiation of NSCs in vitro”, Tissue Engineering Part A, 20(5-6), 1038-1048, (2014).
  • [34] Lee, D. J., Fontaine, A., Meng, X., & Park, D., “Biomimetic nerve guide conduit containing intraluminal microconduits with aligned nanofibers markedly facilitates in nerve regeneration”, ACS Biomaterials Science & Engineering, 2(8), 1403-1410, (2016).
  • [35] Ni, H. C., Tseng, T. C., Chen, J. R., Hsu, S. H., & Chiu, M., “Fabrication of bioactive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap”, Biofabrication, 5(3), 035010, (2013).
  • [36] Chiono, V., & Tonda-Turo, C., “Trends in the design of nerve guide conduits in peripheral nerve tissue engineering”, Progress in neurobiology, 131, 87-104, (2015).
  • [37] Kapfer, S. C., Hyde, S. T., Mecke, K., Arns, C. H., & Schröder-Turk, G. E., “Minimal surface scaffold designs for tissue engineering”, Biomaterials, 32(29), 6875-6882, (2011).
  • [38] Torquato, S., Hyun, S., & Donev, A., “Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity”, Physical review letters, 89(26), 266601, (2002).
  • [39] Kladovasilakis, N., Charalampous, P., Tsongas, K., Kostavelis, I., Tzetzis, D., & Tzovaras, D., “Experimental and computational investigation of lattice sandwich structures constructed by additive manufacturing technologies”, Journal of Manufacturing and Materials Processing, 5(3), 95, (2021).
  • [40] Schoen, A. H., “Infinite periodic minimal surfaces without self-intersections”, National Aeronautics and Space Administration, (Vol. 5541), (1970).
  • [41] Hoffman, D. A., “Global Theory of Minimal Surfaces”, Proceedings of the Clay Mathematics Institute 2001 Summer School, Mathematical Sciences Research Institute, Berkeley, California, June 25-July 27, 2001 (Vol. 2). OECD Publishing, (2005).
  • [42] Karcher, H., “The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions”, Manuscripta mathematica, 64(3), 291-357, (1989).
  • [43] Schwarz, H. A., “Gesammelte mathematische abhandlungen”, American Mathematical Soc., (Vol. 260), (1972).
  • [44] Clements, B. A., Bushman, J., Murthy, N. S., Ezra, M., Pastore, C. M., and Kohn, J., “Design of barrier coatings on kink-resistant peripheral nerve conduits”, J. Tissue Eng. 7, 2041731416629471, (2016).
  • [45] Daly, W. T., Yao, L., Abu-rub, M. T., O'Connell, C., Zeugolis, D. I., Windebank, A. J., & Pandit, A. S., “The effect of intraluminal contact mediated guide signals on axonal mismatch during peripheral nerve repair”, Biomaterials, 33(28), 6660-6671, (2012).
  • [46] Isaacs, J., Mallu, S., Yan, W., & Little, B., “Consequences of oversizing: nerve-to-nerve tube diameter mismatch”, JBJS, 96(17), 1461-1467, (2014).
  • [47] Yi, S., Xu, L., & Gu, X., “Scaffolds for peripheral nerve repair and reconstruction”, Experimental neurology, 319, 112761, (2019).
  • [48] Frost, H. K., Andersson, T., Johansson, S., Englund-Johansson, U., Ekström, P., Dahlin, L. B., & Johansson, F., “Electrospun nerve guide conduits have the potential to bridge peripheral nerve injuries in vivo”, Scientific reports, 8(1), 16716, (2018).
  • [49] Ao, Q., “Progress of nerve bridges in the treatment of peripheral nerve disruptions”, J Neurorestoratology, 4, 107-113, (2016).
  • [50] Nectow, A. R., Marra, K. G., and Kaplan, D. L., “Biomaterials for the development of peripheral nerve guide conduits”, Tissue Eng. Part B Rev. 18, 40–50, (2012).
  • [51] Stang, F., Keilhoff, G., and Fansa, H., “Biocompatibility of different nerve tubes”, Materials 26, 3083-3091, (2009).
  • [52] Teuschl, A. H., Schuh, C., Halbweis, R., Pajer, K., Márton, G., Hopf, R., ... & Hausner, T., “A new preparation method for anisotropic silk fibroin nerve guide conduits and its evaluation in vitro and in a rat sciatic nerve defect model”, Tissue Engineering Part C: Methods, 21(9), 945-957, (2015).
  • [53] Wang, G. W., Yang, H., Wu, W. F., Zhang, P., & Wang, J. Y., “Design and optimization of a biodegradable porous zein conduit using microtubes as a guide for rat sciatic nerve defect repair”, Biomaterials, 131, 145-159, (2017).
  • [54] Jahromi, H. K., Farzin, A., Hasanzadeh, E., Barough, S. E., Mahmoodi, N., Najafabadi, M. R. H., et al., “Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nanotube neural guide conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat”, Mater. Sci. Eng. C 109:110564. doi: 10.1016/j.msec.2019.110564, (2020).
  • [55] O’Brien, F. J., Harley, B. A., Yannas, I. V., and Gibson, L. J., “The effect of pore size on cell adhesion in collagen-GAG scaffolds”, Biomaterials 26, 433–441, (2005).
  • [56] Liu, D., Mi, D., Zhang, T., Zhang, Y., Yan, J., Wang, Y., et al., “Tubulation repair mitigates misdirection of regenerating motor axons across a sciatic nerve gap in rats”, Sci. Rep. 8:3443, (2018).
  • [57] Goulart, C. O., Pereira Lopes, F. R., Monte, Z. O., Dantas, S. V., Souto, A., Oliveira,J. T., et al., “Evaluation of biodegradable polymer conduits - poly(llactic acid) - for guiding sciatic nerve regeneration in mice” Methods 99, 28–36, (2016).
  • [58] Du, J., and Jia, X., “Engineering nerve guide conduits with threedimenisonal bioprinting technology for long gap peripheral nerve regeneration”, Neural Regen. Res. 14:2073, (2019).

Üçlü Periyodik Minimal Yüzey Yapılar Kullanarak Sinir Kılavuz Kanallarının Tasarımı ve Eklemeli İmalatı

Year 2025, Volume: 28 Issue: 1, 267 - 281
https://doi.org/10.2339/politeknik.1470738

Abstract

Doku mühendisliği konusundaki ana araştırma konularından biri iskele tasarımıdır. İskele, izole edilmiş hücrelere konağa nakledilmeden önce yeni dokunun büyümesi için geçici destek görevi gören 3 boyutlu bir yapıdır. Doku mühendisliği yapı iskelelerinin hücreler tarafından kolonize edilmesi amaçlanmaktadır. Yeterli doku büyümesini sağlamak için iskelenin gerekli kimyasal ve fiziksel sinyalleri iletmesi gerekmektedir. İskelenin tasarımı, yapının işlevselliğini belirlemektedir. Doku mühendisliği iskelelerinin tasarımı ve üretimi oldukça karmaşık bir süreçtir. Hücrelerin büyümesi, çoğalması ve doku oluşturmak için farklılaşmasına uygun bir mimari sağlamak amacıyla iskeleler uygun özelliklere sahip olmalıdır. Ancak sınırlı yapısal tasarımlar ve geleneksel üretim teknikleri, iskele özelliklerinin geliştirilmesini engellemektedir. Bu kısıtları aşmak için, araştırmacılar bilgisayar destekli iskele tasarımlarını üretimde 3B baskı teknikleriyle birleştirmektedir. Bu yaklaşım, iskelelerin yüksek derecede karmaşık mikroyapılarla tasarlanarak üretilmesini sağlamaktadır. Sinir kılavuz kanalları tübüler doku mühendisliği iskeleleridir. Literatürde bilgisayar destekli tasarımla 3B üretim tekniklerinin sinir rejenerasyonu için kullanılan sinir kılavuz kanallarını tasarlamak ve üretmek için sıkça uygulandığı görülmesine rağmen üçlü periyodik minimal yüzeylerin yapısal tasarıma temel alındığı çalışmalar kısıtlıdır. Bu çalışmada düz silindir yapı ve iki farklı TPMS birim hücreden olmak üzere üç farklı birim hücre tasarlanmış ve üretilmiştir. Çalışma üçlü periyodik minimal yüzeyler temel alınarak tasarlanmış sinir kılavuz kanallarının üretilebilirlikleri hakkında literatüre katkıda bulunacaktır.

References

  • [1] Gao, S. vd.,“3D-bioprinted GelMA nerve guide conduits promoted peripheral nerve regeneration by inducing trans-differentiation of MSCs into SCLCs via PIEZO1/YAP axis”, Materials Today Advances,17, 100325. (2023).
  • [2] Dadacı, Mehmet, “Biobozunur “Elektrospun kaprolakton” Sinir Kılavuz Kanallarının Periferik Sinir Sistemi Rejenerasyonlarında Etkinliğinin Değerlendirilmesi”, Tıpta Uzmanlık Tezi, Hacettepe Üniversitesi, (2007).
  • [3] Vijayavenkataraman, S., Zhang, S., Thaharah, S., Sriram, G., Lu, W. F., & Fuh, J. Y. H., “Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair”, Polymers,10(7), 753. (2018).
  • [4] Wan, T., Wang, Y. L., Zhang, F. S., Zhang, X. M., Zhang, Y. C., Jiang, H. R. & Zhang, P. X., “The porous structure of peripheral nerve guide conduits: features, fabrication, and implications for peripheral nerve regeneration”, International Journal of Molecular Sciences, 24(18), 14132, (2023).
  • [5] Li, X., Yang, W., Xie, H., Wang, J., Zhang, L., Wang, Z., & Wang, L., “CNT/sericin conductive nerve guide conduit promotes functional recovery of transected peripheral nerve injury in a rat model”, ACS applied materials & interfaces, 12(33), 36860-36872, (2020).
  • [6] Ma, Y., Wang, H., Wang, Q., Cao, X., & Gao, H., “Piezoelectric conduit combined with multi-channel conductive scaffold for peripheral nerve regeneration”, Chemical Engineering Journal, 452, 139424, (2023).
  • [7] Ye, W., Li, H., Yu, K., Xie, C., Wang, P., Zheng, Y.& Gao, Q., “3D printing of gelatin methacrylate-based nerve guide conduits with multiple channels”, Materials & Design, 192, 108757, (2020).
  • [8] Shen, J., Wang, J., Liu, X., Sun, Y., Yin, A., Chai, Y.& Zheng, X., “In situ prevascularization strategy with three-dimensional porous conduits for neural tissue engineering”, ACS Applied Materials & Interfaces, 13(43), 50785-50801, (2021).
  • [9] Zheng, T., Wu, L., Xu, J., Sun, S., Guan, W., Han, Q., ... & Li, G., “YR/DFO@ DCNT functionalized anisotropic micro/nano composite topography scaffolds for accelerating long-distance peripheral nerve regeneration”, Composites Part B: Engineering, 246, 110242, (2022).
  • [10] Namhongsa, M., Daranarong, D., Sriyai, M., Molloy, R., Ross, S., Ross, G. M.& Punyodom, W., “Surface-modified polypyrrole-coated PLCL and PLGA nerve guide conduits fabricated by 3D printing and electrospinning” Biomacromolecules, 23(11), 4532-4546, (2022).
  • [11] Top, N., Gökçe, H & Şahin, İ., “Additive Manufacturing of Bio-Inspired Microstructures for Bone Tissue Engineering”, Experimental Techniques, 47(6), 1213-1227, (2023).
  • [12] Ataollahi, S., “A review on additive manufacturing of lattice structures in tissue engineering”, Bioprinting, e00304, (2023).
  • [13] Jia, Z., Xu, X., Zhu, D., & Zheng, Y., “Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare”, Progress in Materials Science, 134, 101072, (2023).
  • [14] Wei, Q., Zhou, J., An, Y., Li, M., Zhang, J., & Yang, S., “Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review”, International Journal of Biological Macromolecules, 232, 123450, (2023).
  • [15] Mota, C., Puppi, D., Chiellini, F., & Chiellini, E., “Additive manufacturing techniques for the production of tissue engineering constructs”, Journal of tissue engineering and regenerative medicine, 9(3), 174-190, (2015).
  • [16] Rahman, M., Mahady Dip, T., Padhye, R., & Houshyar, S., “Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration”, Journal of Biomedical Materials Research Part A, 111(12), 1916-1950, (2023).
  • [17] Stocco, E., Barbon, S., Emmi, A., Tiengo, C., Macchi, V., De Caro, R., & Porzionato, A., “Bridging gaps in peripheral nerves: from current strategies to future perspectives in conduit design”, International Journal of Molecular Sciences, 24(11), 9170, (2023).
  • [18] Hanks, B., Berthel, J., Frecker, M., & Simpson, T. W., “Mechanical properties of additively manufactured metal lattice structures: Data review and design interface”, Additive Manufacturing, 35, 101301, (2020).
  • [19] Feng, J., Fu, J., Yao, X., & He, Y., “Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications”, International Journal of Extreme Manufacturing, 4(2), 022001, (2022).
  • [20] Top, N., Şahin, İ., & Gökçe, H., “The Mechanical Properties of Functionally Graded Lattice Structures Derived Using Computer-Aided Design for Additive Manufacturing”, Applied Sciences, 13(21), 11667, (2023).
  • [21] Rajagopalan, S., & Robb, R. A., “Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds”, Medical image analysis, 10(5), 693-712, (2006).
  • [22] Gan, X., Wang, J., Liu, Z., Zeng, M., Wang, Q., & Cheng, Z., “Numerical Study on Thermal Hydraulic and Flow-Induced Noise in Triply Periodic Minimal Surface (TPMS) Conduits”, ASME Journal of Heat and Mass Transfer, 146(4), (2024).
  • [23] Chen, W., Tang, X., Chu, X., Yang, Y., Xu, W., Fu, D., & Zhou, W., “Impact of catalyst carrier with TPMS structures on hydrogen production by methanol reforming”, International Journal of Hydrogen Energy, 58, 1177-1189, (2024).
  • [24] Zeng, C., Wang, W., Hai, K., & Ma, S., “Lightweight airborne TPMS-filled reflective mirror design for low thermal deformation”, Composite Structures, 327, 117665, (2024).
  • [25] Zhang, S., “Computational Design and Optimization of Scaffolds for Tissue Engineering Application”, Doctoral dissertation, National University of Singapore (Singapore), (2018).
  • [26] Rutkowski, G. E., and Heath, C. A., “Development of a bioartificial nerve graft. II. nerve regeneration in vitro”, Biotechnol. Prog., 18, 373–379, (2002).
  • [27] Tian, L., Prabhakaran, M. P., & Ramakrishna, S., “Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules”, Regenerative biomaterials, 2(1), 31-45, (2015).
  • [28] Yeranee, K., & Rao, Y., “Heat transfer and pressure loss of turbulent flow in a wedge-shaped cooling channel with different types of triply periodic minimal surfaces”, ASME Journal of Heat and Mass Transfer, 145(9), 093901, (2023).
  • [29] Layani, M., Wang, X., & Magdassi, S., “Novel materials for 3D printing by photopolymerization”, Advanced Materials, 30(41), 1706344, (2018).
  • [30] Yu, W., Zhao, W., Zhu, C., Zhang, X., Ye, D., Zhang, W.,& Zhang, Z., “Sciatic nerve regeneration in rats by a promising electrospun collagen/poly (ε-caprolactone) nerve conduit with tailored degradation rate”, BMC neuroscience, 12, 1-14, (2011).
  • [31] Gan, L., Zhao, L., Zhao, Y., Li, K., Tong, Z., Yi, L., ... & Chen, Y., “Cellulose/soy protein composite-based nerve guide conduits with designed microstructure for peripheral nerve regeneration”, Journal of neural engineering, 13(5), 056019, (2016).
  • [32] Zhu, Y., Wang, A., Patel, S., Kurpinski, K., Diao, E., Bao, X., & Li, S., “Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration”, Tissue Engineering Part C: Methods, 17(7), 705-715, (2011).
  • [33] Zeng, C. G., Xiong, Y., Xie, G., Dong, P., & Quan, D., “Fabrication and evaluation of PLLA multiconduit conduits with nanofibrous microstructure for the differentiation of NSCs in vitro”, Tissue Engineering Part A, 20(5-6), 1038-1048, (2014).
  • [34] Lee, D. J., Fontaine, A., Meng, X., & Park, D., “Biomimetic nerve guide conduit containing intraluminal microconduits with aligned nanofibers markedly facilitates in nerve regeneration”, ACS Biomaterials Science & Engineering, 2(8), 1403-1410, (2016).
  • [35] Ni, H. C., Tseng, T. C., Chen, J. R., Hsu, S. H., & Chiu, M., “Fabrication of bioactive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap”, Biofabrication, 5(3), 035010, (2013).
  • [36] Chiono, V., & Tonda-Turo, C., “Trends in the design of nerve guide conduits in peripheral nerve tissue engineering”, Progress in neurobiology, 131, 87-104, (2015).
  • [37] Kapfer, S. C., Hyde, S. T., Mecke, K., Arns, C. H., & Schröder-Turk, G. E., “Minimal surface scaffold designs for tissue engineering”, Biomaterials, 32(29), 6875-6882, (2011).
  • [38] Torquato, S., Hyun, S., & Donev, A., “Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity”, Physical review letters, 89(26), 266601, (2002).
  • [39] Kladovasilakis, N., Charalampous, P., Tsongas, K., Kostavelis, I., Tzetzis, D., & Tzovaras, D., “Experimental and computational investigation of lattice sandwich structures constructed by additive manufacturing technologies”, Journal of Manufacturing and Materials Processing, 5(3), 95, (2021).
  • [40] Schoen, A. H., “Infinite periodic minimal surfaces without self-intersections”, National Aeronautics and Space Administration, (Vol. 5541), (1970).
  • [41] Hoffman, D. A., “Global Theory of Minimal Surfaces”, Proceedings of the Clay Mathematics Institute 2001 Summer School, Mathematical Sciences Research Institute, Berkeley, California, June 25-July 27, 2001 (Vol. 2). OECD Publishing, (2005).
  • [42] Karcher, H., “The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions”, Manuscripta mathematica, 64(3), 291-357, (1989).
  • [43] Schwarz, H. A., “Gesammelte mathematische abhandlungen”, American Mathematical Soc., (Vol. 260), (1972).
  • [44] Clements, B. A., Bushman, J., Murthy, N. S., Ezra, M., Pastore, C. M., and Kohn, J., “Design of barrier coatings on kink-resistant peripheral nerve conduits”, J. Tissue Eng. 7, 2041731416629471, (2016).
  • [45] Daly, W. T., Yao, L., Abu-rub, M. T., O'Connell, C., Zeugolis, D. I., Windebank, A. J., & Pandit, A. S., “The effect of intraluminal contact mediated guide signals on axonal mismatch during peripheral nerve repair”, Biomaterials, 33(28), 6660-6671, (2012).
  • [46] Isaacs, J., Mallu, S., Yan, W., & Little, B., “Consequences of oversizing: nerve-to-nerve tube diameter mismatch”, JBJS, 96(17), 1461-1467, (2014).
  • [47] Yi, S., Xu, L., & Gu, X., “Scaffolds for peripheral nerve repair and reconstruction”, Experimental neurology, 319, 112761, (2019).
  • [48] Frost, H. K., Andersson, T., Johansson, S., Englund-Johansson, U., Ekström, P., Dahlin, L. B., & Johansson, F., “Electrospun nerve guide conduits have the potential to bridge peripheral nerve injuries in vivo”, Scientific reports, 8(1), 16716, (2018).
  • [49] Ao, Q., “Progress of nerve bridges in the treatment of peripheral nerve disruptions”, J Neurorestoratology, 4, 107-113, (2016).
  • [50] Nectow, A. R., Marra, K. G., and Kaplan, D. L., “Biomaterials for the development of peripheral nerve guide conduits”, Tissue Eng. Part B Rev. 18, 40–50, (2012).
  • [51] Stang, F., Keilhoff, G., and Fansa, H., “Biocompatibility of different nerve tubes”, Materials 26, 3083-3091, (2009).
  • [52] Teuschl, A. H., Schuh, C., Halbweis, R., Pajer, K., Márton, G., Hopf, R., ... & Hausner, T., “A new preparation method for anisotropic silk fibroin nerve guide conduits and its evaluation in vitro and in a rat sciatic nerve defect model”, Tissue Engineering Part C: Methods, 21(9), 945-957, (2015).
  • [53] Wang, G. W., Yang, H., Wu, W. F., Zhang, P., & Wang, J. Y., “Design and optimization of a biodegradable porous zein conduit using microtubes as a guide for rat sciatic nerve defect repair”, Biomaterials, 131, 145-159, (2017).
  • [54] Jahromi, H. K., Farzin, A., Hasanzadeh, E., Barough, S. E., Mahmoodi, N., Najafabadi, M. R. H., et al., “Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nanotube neural guide conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat”, Mater. Sci. Eng. C 109:110564. doi: 10.1016/j.msec.2019.110564, (2020).
  • [55] O’Brien, F. J., Harley, B. A., Yannas, I. V., and Gibson, L. J., “The effect of pore size on cell adhesion in collagen-GAG scaffolds”, Biomaterials 26, 433–441, (2005).
  • [56] Liu, D., Mi, D., Zhang, T., Zhang, Y., Yan, J., Wang, Y., et al., “Tubulation repair mitigates misdirection of regenerating motor axons across a sciatic nerve gap in rats”, Sci. Rep. 8:3443, (2018).
  • [57] Goulart, C. O., Pereira Lopes, F. R., Monte, Z. O., Dantas, S. V., Souto, A., Oliveira,J. T., et al., “Evaluation of biodegradable polymer conduits - poly(llactic acid) - for guiding sciatic nerve regeneration in mice” Methods 99, 28–36, (2016).
  • [58] Du, J., and Jia, X., “Engineering nerve guide conduits with threedimenisonal bioprinting technology for long gap peripheral nerve regeneration”, Neural Regen. Res. 14:2073, (2019).
There are 58 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Aybegüm Numanoğlu 0000-0001-9425-1756

İsmail Şahin 0000-0001-8566-3433

Neslihan Top 0000-0002-0771-6963

Early Pub Date July 18, 2024
Publication Date
Submission Date April 19, 2024
Acceptance Date May 27, 2024
Published in Issue Year 2025 Volume: 28 Issue: 1

Cite

APA Numanoğlu, A., Şahin, İ., & Top, N. (n.d.). Design and Additive Manufacturing of Nerve Guide Conduits Using Triple Periodic Minimal Surface Structures. Politeknik Dergisi, 28(1), 267-281. https://doi.org/10.2339/politeknik.1470738
AMA Numanoğlu A, Şahin İ, Top N. Design and Additive Manufacturing of Nerve Guide Conduits Using Triple Periodic Minimal Surface Structures. Politeknik Dergisi. 28(1):267-281. doi:10.2339/politeknik.1470738
Chicago Numanoğlu, Aybegüm, İsmail Şahin, and Neslihan Top. “Design and Additive Manufacturing of Nerve Guide Conduits Using Triple Periodic Minimal Surface Structures”. Politeknik Dergisi 28, no. 1 n.d.: 267-81. https://doi.org/10.2339/politeknik.1470738.
EndNote Numanoğlu A, Şahin İ, Top N Design and Additive Manufacturing of Nerve Guide Conduits Using Triple Periodic Minimal Surface Structures. Politeknik Dergisi 28 1 267–281.
IEEE A. Numanoğlu, İ. Şahin, and N. Top, “Design and Additive Manufacturing of Nerve Guide Conduits Using Triple Periodic Minimal Surface Structures”, Politeknik Dergisi, vol. 28, no. 1, pp. 267–281, doi: 10.2339/politeknik.1470738.
ISNAD Numanoğlu, Aybegüm et al. “Design and Additive Manufacturing of Nerve Guide Conduits Using Triple Periodic Minimal Surface Structures”. Politeknik Dergisi 28/1 (n.d.), 267-281. https://doi.org/10.2339/politeknik.1470738.
JAMA Numanoğlu A, Şahin İ, Top N. Design and Additive Manufacturing of Nerve Guide Conduits Using Triple Periodic Minimal Surface Structures. Politeknik Dergisi.;28:267–281.
MLA Numanoğlu, Aybegüm et al. “Design and Additive Manufacturing of Nerve Guide Conduits Using Triple Periodic Minimal Surface Structures”. Politeknik Dergisi, vol. 28, no. 1, pp. 267-81, doi:10.2339/politeknik.1470738.
Vancouver Numanoğlu A, Şahin İ, Top N. Design and Additive Manufacturing of Nerve Guide Conduits Using Triple Periodic Minimal Surface Structures. Politeknik Dergisi. 28(1):267-81.