Research Article
BibTex RIS Cite

KKM implies the Brouwer fixed point theorem: Another proof

Year 2020, Volume: 3 Issue: 1, 12 - 17, 31.03.2020

Abstract

It is well-known that the Brouwer fixed point theorem (BFPT), the weak Sperner combinatorial lemma, and the
Knaster-Kuratowski-Mazurkiewicz (KKM) theorem are mutually equivalent and have scores of equivalent formulations and several thousand applications. It is well-known that KKM deduced the BFPT from Sperner Lemma. In this article, we recall some KKM theoretic results implying the BFPT.

References

  • [1] L.E.J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1912) 97–115.
  • [2] C.-M. Chen and T.-H. Chang, Some results for the family 2– g KKM(X,Y ) and the ?-mapping in hyperconvex metric spaces, Nonlinear Anal. 69 (2008) 2533–2540.
  • [3] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Annalen 142 (1961) 305–310.
  • [4] B. Halpern, Fixed-point theorems for outward maps, Doctoral Thesis, U.C.L.A. 1965.
  • [5] M.A. Khamsi, KKM and Ky Fan theorems in hyperconvex metric spaces, J. Math. Anal. Appl. 204 (1996) 298–306.
  • [6] M.A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010) 3123–3129. doi:10.1016/j.na.2010.06.084.
  • [7] B. Knaster, K. Kuratowski und S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-Dimensionale Simplexe, Fund. Math. 14 (1929) 132–137.
  • [8] R.D. Mauldin, The Scottish Book: Mathematics from the Scottish Café, Birkhäuser, Boston-Basel-Stuttgart, 1981.
  • [9] S. Park, A generalization of the Brouwer fixed point theorem, Bull. Korean Math. Soc. 28 (1991) 33–37.
  • [10] S. Park, Elements of the KKM theory on abstract convex spaces, J. Korean Math. Soc. 45(1) (2008) 1–27.
  • [11] S. Park, New foundations of the KKM theory, J. Nonlinear Convex. Anal. 9(3) (2008) 331–350.
  • [12] S. Park, The KKM principle in abstract convex spaces — Equivalent formulations and applications, Nonlinear Analysis 73 (2010) 1028–1042.
  • [13] S. Park, Fixed point theorems in the new era of the KKM theory, Fixed Point Theory and Its Applications (Proc. ICFPTA-2009), 145–159, Yokohama Publ., 2010.
  • [14] S. Park, Comments on the KKM theory of metric type spaces, Linear and Nonlinear Anal. 2(1) (2016) 39–45.
  • [15] S. Park, A history of the KKM Theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 56(2) (2017) 1–51.
  • [16] S. Park, On further examples of partial KKM spaces, J. Fixed Point Theory 2019:10 (18 June, 2019), 1–18.
  • [17] S. Park, Extending the realm of Horvath spaces, J. Nonlinear Convex Anal. 20(8) (2019) 1609–1621.
  • [18] S. Park, KKM implies the Brouwer fixed point theorem: Revisited, to appear.
  • [19] S. Park and K.S. Jeong, A proof of the Sperner lemma from the Brouwer fixed point theorem, Nonlinear Anal. Forum 8 (2003), 65–67.
  • [20] E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes, Abh. Math. Seminar Univ. Hamburg 6 (1928) 265–272.

Year 2020, Volume: 3 Issue: 1, 12 - 17, 31.03.2020

Abstract

References

  • [1] L.E.J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1912) 97–115.
  • [2] C.-M. Chen and T.-H. Chang, Some results for the family 2– g KKM(X,Y ) and the ?-mapping in hyperconvex metric spaces, Nonlinear Anal. 69 (2008) 2533–2540.
  • [3] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Annalen 142 (1961) 305–310.
  • [4] B. Halpern, Fixed-point theorems for outward maps, Doctoral Thesis, U.C.L.A. 1965.
  • [5] M.A. Khamsi, KKM and Ky Fan theorems in hyperconvex metric spaces, J. Math. Anal. Appl. 204 (1996) 298–306.
  • [6] M.A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010) 3123–3129. doi:10.1016/j.na.2010.06.084.
  • [7] B. Knaster, K. Kuratowski und S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-Dimensionale Simplexe, Fund. Math. 14 (1929) 132–137.
  • [8] R.D. Mauldin, The Scottish Book: Mathematics from the Scottish Café, Birkhäuser, Boston-Basel-Stuttgart, 1981.
  • [9] S. Park, A generalization of the Brouwer fixed point theorem, Bull. Korean Math. Soc. 28 (1991) 33–37.
  • [10] S. Park, Elements of the KKM theory on abstract convex spaces, J. Korean Math. Soc. 45(1) (2008) 1–27.
  • [11] S. Park, New foundations of the KKM theory, J. Nonlinear Convex. Anal. 9(3) (2008) 331–350.
  • [12] S. Park, The KKM principle in abstract convex spaces — Equivalent formulations and applications, Nonlinear Analysis 73 (2010) 1028–1042.
  • [13] S. Park, Fixed point theorems in the new era of the KKM theory, Fixed Point Theory and Its Applications (Proc. ICFPTA-2009), 145–159, Yokohama Publ., 2010.
  • [14] S. Park, Comments on the KKM theory of metric type spaces, Linear and Nonlinear Anal. 2(1) (2016) 39–45.
  • [15] S. Park, A history of the KKM Theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 56(2) (2017) 1–51.
  • [16] S. Park, On further examples of partial KKM spaces, J. Fixed Point Theory 2019:10 (18 June, 2019), 1–18.
  • [17] S. Park, Extending the realm of Horvath spaces, J. Nonlinear Convex Anal. 20(8) (2019) 1609–1621.
  • [18] S. Park, KKM implies the Brouwer fixed point theorem: Revisited, to appear.
  • [19] S. Park and K.S. Jeong, A proof of the Sperner lemma from the Brouwer fixed point theorem, Nonlinear Anal. Forum 8 (2003), 65–67.
  • [20] E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes, Abh. Math. Seminar Univ. Hamburg 6 (1928) 265–272.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Sehie Park

Publication Date March 31, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Park, S. (2020). KKM implies the Brouwer fixed point theorem: Another proof. Results in Nonlinear Analysis, 3(1), 12-17.
AMA Park S. KKM implies the Brouwer fixed point theorem: Another proof. RNA. March 2020;3(1):12-17.
Chicago Park, Sehie. “KKM Implies the Brouwer Fixed Point Theorem: Another Proof”. Results in Nonlinear Analysis 3, no. 1 (March 2020): 12-17.
EndNote Park S (March 1, 2020) KKM implies the Brouwer fixed point theorem: Another proof. Results in Nonlinear Analysis 3 1 12–17.
IEEE S. Park, “KKM implies the Brouwer fixed point theorem: Another proof”, RNA, vol. 3, no. 1, pp. 12–17, 2020.
ISNAD Park, Sehie. “KKM Implies the Brouwer Fixed Point Theorem: Another Proof”. Results in Nonlinear Analysis 3/1 (March2020), 12-17.
JAMA Park S. KKM implies the Brouwer fixed point theorem: Another proof. RNA. 2020;3:12–17.
MLA Park, Sehie. “KKM Implies the Brouwer Fixed Point Theorem: Another Proof”. Results in Nonlinear Analysis, vol. 3, no. 1, 2020, pp. 12-17.
Vancouver Park S. KKM implies the Brouwer fixed point theorem: Another proof. RNA. 2020;3(1):12-7.