Research Article
BibTex RIS Cite

Mold Design and Analysis for Multi-Component Plastic Injection Parts with Contrasting Functional Features: Case Study

Year 2022, , 974 - 989, 20.10.2022
https://doi.org/10.16984/saufenbilder.1138590

Abstract

The classical plastic injection method is based on the principle of injecting a single color of a single polymeric material into the mold cavity under high pressure. In cases where the products are expected to have contrasted functional features and different colors, the classic injection process and the conventional injection molds are not sufficient. This paper proposes a new design approach for multi-component injection molds required by products containing different polymeric materials or different colors of the same polymeric material at the same time. It also presents a case study including the design of the hot runner, electromechanical rotary-cross, cooling, and ejection systems of a two-component, eight-cavity toothbrush mold. The polymeric materials are polypropylene for the first component, and styrene based thermoplastic elastomer for the second component, which exhibit good bonding properties with each other. In addition, an analysis study covering the filling parameters and production defect generations is also provided. The adopted design approach provides a production rate of 1600 parts per hour, corresponding to 18 s cycle time and 200 cycles per hour, and makes it sufficient to rotate only the 80 kg core plate instead of 1120 kg entire core side. Compared to existing methods, the results show that the proposed multi-component injection mold design method eliminates the need for particular injection machines and robotic systems, shortens the cycle time, and reduces energy consumption.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] C. A. Harper, “Handbook of Plastic Processes”, ISBN: 978-0-471-66255-6, New Jersey, USA, Wiley, 2006.
  • [2] T. Oswald, L. S. Turng, P. Gramann, “Injection Molding Handbook”, 2nd ed., ISBN: 9783446407817, Munich, Germany, Hanser, 2007.
  • [3] Ş. Katmer, Ç. Karataş, “Part quality in Injection Molding of Shape Memory Polyurethane”, Pamukkale University Journal of Engineering Sciences, vol. 27, no. 4, pp. 472-477, 2021.
  • [4] R. Dangel, “Injection Molds for Beginners”, ISBN: 978-1-56990-631-6. Munich, Germany, Hanser, 2016.
  • [5] V. Goodship, B. Middleton, R. Cherrington, “Design and Manufacture of Plastic Components for Multifunctionality, Structural Composites, Injection Molding, and 3D Printing”, ISBN: 978-0-323-34061-8, Elsevier, 2016.
  • [6] G. Menges, W. Michaeli, P. Mohren, “How to Make Injection Molds”, 3rd ed., ISBN: 978-3-446-40180-8, Munich, Germany, Hanser, 2001.
  • [7] R. A. Malloy, “Plastic Part Design for Injection Molding”, 2nd ed., ISBN: 978-1-56990-436-7, Munich, Germany, Hanser, 2010.
  • [8] E. Yapıcıoğlu, “Co-injection: Multiple Component Injection Molds”, TurkCADCAM Design and Manufacturing Technologies Portal, 2007.
  • [9] H. Şahin, “Co-injection”, TurkCADCAM Design and Manufacturing Technologies Portal, 2008.
  • [10] H. Wu, G. Zhao, G. Wang, W. Zhang, Y. Li, “A new Core-Back Foam Injection Molding Method with Chemical Blowing Agents”, Materials and Design, vol. 144, pp. 331-342, 2018.
  • [11] E. Ertekin, U. Acun, “Two-Component Plastic Injection Mold and Rotary Cross System Design”, BSc Thesis, Sakarya University, Türkiye, 2018.
  • [12] P. Jones, “The Mould Design Guide”, ISBN: 978-1-84735-088-6, Smithers Rapra, 2008.
  • [13] G. Mennig, K. Stoeckhert, “Mold Making Handbook”, 3rd ed., ISBN 978-1-56990-446-6, Munich, Germany, Hanser, 2013.
  • [14] J. M. Fischer, “Handbook of Molded Part Shrinkage and Warpage”, 2nd ed., ISBN: 978-1-4557-2597-7, Elsevier, 2013.
  • [15] D. O. Kazmer, “Injection Mold Design Engineering”, 2nd ed., ISBN: 978-1-56990-570-8, Munich, Germany, Hanser, 2016.
  • [16] M. Moayyedian, “Intelligent Optimization of Mold Design and Process Parameters in Injection Molding”, ISBN 978-3-030-03355-2, Springer, 2019.
  • [17] K. Çetinkaya, H. Başak, “Computer Aided Three Dimensional Design of Mold Components”, Pamukkale University Journal of Engineering Sciences, vol. 6, no. 2, pp. 155-160, 2000.
  • [18] M. O. Yağır, O. H. Mete, “Numerical Model Analysis of an Industrial Product, Drilling and Tapping Operations on Reducing the Mold Design Process”, Sakarya University Journal of Science, vol. 21, no. 2, pp. 131-140, 2017.
  • [19] D. Şafak, “Examination of Plastic Injection Mold Design and Applied Design Example”, MSc Thesis, Istanbul Technical University, Türkiye, 2001.
  • [20] C. Koyun, “Computer Aided Plastic Injection Mold Design and Analysis”, MSc Thesis, Yıldız Technical University, Türkiye, 2005.
  • [21] W. D. Callister, D. G. Rethwisch, “Materials Science and Engineering”, 8th ed., ISBN 978-605-133-418-9, Nobel Publishing, 2013.
  • [22] Y. Kanbur, Ü. Tayfun, “Mechanical, Physical and Morphological Properties of Polypropylene/Huntite Composites”, Sakarya University Journal of Science, vol. 21, no. 5, pp. 1045-1050, 2017.
  • [23] R. Spina, “Injection Molding of Automotive Components: Comparison Between Hot Runner Systems for a Case Study”, Journal of Materials Processing Technology, vol. 155, pp. 1497-1504, 2004.
  • [24] T. Öztürk, A. Özkan, “Comparison of Hot and Cold Runner System”, Düzce University Journal of Science and Technology, vol. 3, no. 1, pp. 283-298, 2015.
  • [25] A. Khan, “Injection Mold Design Optimization Based on Runner System Design and Operating Process Conditions Through Simulation”, MSc Thesis, Lamar University, USA, 2015.
  • [26] J. P. Beaumont, “Runner and Gating Design Handbook Tools for Successful Injection Molding”, 3rd ed., ISBN: 978-1-56990-590-6, Munich, Germany, Hanser, 2019.
  • [27] H. Gürün, A. Özdemir, T. Acar, “Computer Aided Design of the Cooling System for Plastic Injection Molds”. Pamukkale University Journal of Engineering Sciences, vol. 15, no. 2, pp. 263-268, 2009.
  • [28] M. T. Oktaç, M. Timur, H. Kılıç, “Impact of Dehumidification Devices on Production Efficiency in Plastic Injection”, Sakarya University Journal of Science, vol. 25, no. 5, pp. 1129-1135, 2021.
  • [29] R. Selden, “Co-injection Molding: Effect of Processing on Material Distribution and Mechanical Properties of a Sandwich Molded Plate”, Polymer Engineering and Science, vol. 40, no. 5, pp. 1165-1176, 2004.
  • [30] H. Zhou, “Computer Modeling for Injection Molding Simulation, Optimization, and Control”, ISBN 978-0-470-60299-7, Wiley, 2013.
  • [31] Ö. Erkan, “Plastic Analysis by Autodesk Moldflow Ultimate”, ISBN: 978-975-02-2632-8, Ankara, Türkiye, Seçkin Publishing, 2014.
  • [32] F. Mieth, M. Tromm, H. P. Heim, “Specialized Injection Molding Techniques”, ISBN 978-0-323-34100-4, Elsevier, 2015.
Year 2022, , 974 - 989, 20.10.2022
https://doi.org/10.16984/saufenbilder.1138590

Abstract

Project Number

-

References

  • [1] C. A. Harper, “Handbook of Plastic Processes”, ISBN: 978-0-471-66255-6, New Jersey, USA, Wiley, 2006.
  • [2] T. Oswald, L. S. Turng, P. Gramann, “Injection Molding Handbook”, 2nd ed., ISBN: 9783446407817, Munich, Germany, Hanser, 2007.
  • [3] Ş. Katmer, Ç. Karataş, “Part quality in Injection Molding of Shape Memory Polyurethane”, Pamukkale University Journal of Engineering Sciences, vol. 27, no. 4, pp. 472-477, 2021.
  • [4] R. Dangel, “Injection Molds for Beginners”, ISBN: 978-1-56990-631-6. Munich, Germany, Hanser, 2016.
  • [5] V. Goodship, B. Middleton, R. Cherrington, “Design and Manufacture of Plastic Components for Multifunctionality, Structural Composites, Injection Molding, and 3D Printing”, ISBN: 978-0-323-34061-8, Elsevier, 2016.
  • [6] G. Menges, W. Michaeli, P. Mohren, “How to Make Injection Molds”, 3rd ed., ISBN: 978-3-446-40180-8, Munich, Germany, Hanser, 2001.
  • [7] R. A. Malloy, “Plastic Part Design for Injection Molding”, 2nd ed., ISBN: 978-1-56990-436-7, Munich, Germany, Hanser, 2010.
  • [8] E. Yapıcıoğlu, “Co-injection: Multiple Component Injection Molds”, TurkCADCAM Design and Manufacturing Technologies Portal, 2007.
  • [9] H. Şahin, “Co-injection”, TurkCADCAM Design and Manufacturing Technologies Portal, 2008.
  • [10] H. Wu, G. Zhao, G. Wang, W. Zhang, Y. Li, “A new Core-Back Foam Injection Molding Method with Chemical Blowing Agents”, Materials and Design, vol. 144, pp. 331-342, 2018.
  • [11] E. Ertekin, U. Acun, “Two-Component Plastic Injection Mold and Rotary Cross System Design”, BSc Thesis, Sakarya University, Türkiye, 2018.
  • [12] P. Jones, “The Mould Design Guide”, ISBN: 978-1-84735-088-6, Smithers Rapra, 2008.
  • [13] G. Mennig, K. Stoeckhert, “Mold Making Handbook”, 3rd ed., ISBN 978-1-56990-446-6, Munich, Germany, Hanser, 2013.
  • [14] J. M. Fischer, “Handbook of Molded Part Shrinkage and Warpage”, 2nd ed., ISBN: 978-1-4557-2597-7, Elsevier, 2013.
  • [15] D. O. Kazmer, “Injection Mold Design Engineering”, 2nd ed., ISBN: 978-1-56990-570-8, Munich, Germany, Hanser, 2016.
  • [16] M. Moayyedian, “Intelligent Optimization of Mold Design and Process Parameters in Injection Molding”, ISBN 978-3-030-03355-2, Springer, 2019.
  • [17] K. Çetinkaya, H. Başak, “Computer Aided Three Dimensional Design of Mold Components”, Pamukkale University Journal of Engineering Sciences, vol. 6, no. 2, pp. 155-160, 2000.
  • [18] M. O. Yağır, O. H. Mete, “Numerical Model Analysis of an Industrial Product, Drilling and Tapping Operations on Reducing the Mold Design Process”, Sakarya University Journal of Science, vol. 21, no. 2, pp. 131-140, 2017.
  • [19] D. Şafak, “Examination of Plastic Injection Mold Design and Applied Design Example”, MSc Thesis, Istanbul Technical University, Türkiye, 2001.
  • [20] C. Koyun, “Computer Aided Plastic Injection Mold Design and Analysis”, MSc Thesis, Yıldız Technical University, Türkiye, 2005.
  • [21] W. D. Callister, D. G. Rethwisch, “Materials Science and Engineering”, 8th ed., ISBN 978-605-133-418-9, Nobel Publishing, 2013.
  • [22] Y. Kanbur, Ü. Tayfun, “Mechanical, Physical and Morphological Properties of Polypropylene/Huntite Composites”, Sakarya University Journal of Science, vol. 21, no. 5, pp. 1045-1050, 2017.
  • [23] R. Spina, “Injection Molding of Automotive Components: Comparison Between Hot Runner Systems for a Case Study”, Journal of Materials Processing Technology, vol. 155, pp. 1497-1504, 2004.
  • [24] T. Öztürk, A. Özkan, “Comparison of Hot and Cold Runner System”, Düzce University Journal of Science and Technology, vol. 3, no. 1, pp. 283-298, 2015.
  • [25] A. Khan, “Injection Mold Design Optimization Based on Runner System Design and Operating Process Conditions Through Simulation”, MSc Thesis, Lamar University, USA, 2015.
  • [26] J. P. Beaumont, “Runner and Gating Design Handbook Tools for Successful Injection Molding”, 3rd ed., ISBN: 978-1-56990-590-6, Munich, Germany, Hanser, 2019.
  • [27] H. Gürün, A. Özdemir, T. Acar, “Computer Aided Design of the Cooling System for Plastic Injection Molds”. Pamukkale University Journal of Engineering Sciences, vol. 15, no. 2, pp. 263-268, 2009.
  • [28] M. T. Oktaç, M. Timur, H. Kılıç, “Impact of Dehumidification Devices on Production Efficiency in Plastic Injection”, Sakarya University Journal of Science, vol. 25, no. 5, pp. 1129-1135, 2021.
  • [29] R. Selden, “Co-injection Molding: Effect of Processing on Material Distribution and Mechanical Properties of a Sandwich Molded Plate”, Polymer Engineering and Science, vol. 40, no. 5, pp. 1165-1176, 2004.
  • [30] H. Zhou, “Computer Modeling for Injection Molding Simulation, Optimization, and Control”, ISBN 978-0-470-60299-7, Wiley, 2013.
  • [31] Ö. Erkan, “Plastic Analysis by Autodesk Moldflow Ultimate”, ISBN: 978-975-02-2632-8, Ankara, Türkiye, Seçkin Publishing, 2014.
  • [32] F. Mieth, M. Tromm, H. P. Heim, “Specialized Injection Molding Techniques”, ISBN 978-0-323-34100-4, Elsevier, 2015.
There are 32 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Akın Oğuz Kaptı 0000-0003-2059-6086

Erdi Ertekin 0000-0002-7719-5622

Uğur Acun 0000-0002-7609-431X

Project Number -
Publication Date October 20, 2022
Submission Date July 1, 2022
Acceptance Date August 25, 2022
Published in Issue Year 2022

Cite

APA Kaptı, A. O., Ertekin, E., & Acun, U. (2022). Mold Design and Analysis for Multi-Component Plastic Injection Parts with Contrasting Functional Features: Case Study. Sakarya University Journal of Science, 26(5), 974-989. https://doi.org/10.16984/saufenbilder.1138590
AMA Kaptı AO, Ertekin E, Acun U. Mold Design and Analysis for Multi-Component Plastic Injection Parts with Contrasting Functional Features: Case Study. SAUJS. October 2022;26(5):974-989. doi:10.16984/saufenbilder.1138590
Chicago Kaptı, Akın Oğuz, Erdi Ertekin, and Uğur Acun. “Mold Design and Analysis for Multi-Component Plastic Injection Parts With Contrasting Functional Features: Case Study”. Sakarya University Journal of Science 26, no. 5 (October 2022): 974-89. https://doi.org/10.16984/saufenbilder.1138590.
EndNote Kaptı AO, Ertekin E, Acun U (October 1, 2022) Mold Design and Analysis for Multi-Component Plastic Injection Parts with Contrasting Functional Features: Case Study. Sakarya University Journal of Science 26 5 974–989.
IEEE A. O. Kaptı, E. Ertekin, and U. Acun, “Mold Design and Analysis for Multi-Component Plastic Injection Parts with Contrasting Functional Features: Case Study”, SAUJS, vol. 26, no. 5, pp. 974–989, 2022, doi: 10.16984/saufenbilder.1138590.
ISNAD Kaptı, Akın Oğuz et al. “Mold Design and Analysis for Multi-Component Plastic Injection Parts With Contrasting Functional Features: Case Study”. Sakarya University Journal of Science 26/5 (October 2022), 974-989. https://doi.org/10.16984/saufenbilder.1138590.
JAMA Kaptı AO, Ertekin E, Acun U. Mold Design and Analysis for Multi-Component Plastic Injection Parts with Contrasting Functional Features: Case Study. SAUJS. 2022;26:974–989.
MLA Kaptı, Akın Oğuz et al. “Mold Design and Analysis for Multi-Component Plastic Injection Parts With Contrasting Functional Features: Case Study”. Sakarya University Journal of Science, vol. 26, no. 5, 2022, pp. 974-89, doi:10.16984/saufenbilder.1138590.
Vancouver Kaptı AO, Ertekin E, Acun U. Mold Design and Analysis for Multi-Component Plastic Injection Parts with Contrasting Functional Features: Case Study. SAUJS. 2022;26(5):974-89.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.