Research Article
BibTex RIS Cite

Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences

Year 2023, , 1 - 13, 28.02.2023
https://doi.org/10.16984/saufenbilder.1148618

Abstract

In this paper, we define bi-periodic (p,q)-Fibonacci and bi-periodic (p,q)-Lucas sequences, which generalize Fibonacci type, Lucas type, bi-periodic Fibonacci type and bi-periodic Lucas type sequences, using recurrence relations of (p,q)-Fibonacci and (p,q)-Lucas sequences. Generating functions and Binet formulas that allow us to calculate the nth terms of these sequences are given and the convergence properties of their consecutive terms are examined. Also, we prove some fundamental identities of bi-periodic (p,q)-Fibonacci and bi-periodic (p,q)-Lucas sequences conform to the well-known properties of Fibonacci and Lucas sequences.

References

  • [1] A. F. Horadam, “A Generalized Fibonacci Sequence,” The American Mathematical Monthly, vol. 68, no. 5, pp. 455-459, 1961.
  • [2] S. Falcon, A. Plaza, “On the Fibonacci k-Numbers,” Chaos, Solitons & Fractals, vol. 32, no. 5, pp. 1615-24, 2007.
  • [3] S. Falcon, “On the k-Lucas Numbers,” International Journal of Contemporary Mathematical Sciences, vol. 6, no. 21, pp. 1039-1050, 2011.
  • [4] T. Koshy, “Fibonacci and Lucas Numbers with Applications,” vol. 1, 2nd Edition, Wiley-Interscience Publications, New York, 2017, 704p.
  • [5] Y. Taşyurdu, N. Çobanoğlu, Z. Dilmen, “On the a New Family of k-Fibonacci Numbers,” Erzincan University Journal of Science and Technology, vol. 9 no. 1, pp. 95-101, 2016.
  • [6] Y. K. Panwar, “A Note on the Generalized k-Fibonacci Sequence,” MTU Journal of Engineering and Natural Sciences, vol. 2, no. 2, pp. 29-39, 2021.
  • [7] O. Deveci, Y. Aküzüm, “The Recurrence Sequences via Hurwitz Matrices,” Annals of the Alexandru Ioan Cuza University-Mathematics, vol. 63, no. 3, pp. 1-13, 2017.
  • [8] A. F. Horadam, “Basic Properties of a Certain Generalized Sequence of Numbers,” Fibonacci Quarterly, vol. 3, no. 3, 161–176, 1965.
  • [9] A. Suvarnamani, M. Tatong, “Some Properties of (p,q)-Fibonacci Numbers,” Science and Technology RMUTT Journal, vol. 5, no. 2, pp. 17-21, 2015.
  • [10] A. Suvarnamani, “Some Properties of (p,q)-Lucas Number,” Kyungpook Mathematical Journal, vol. 56, pp. 367-370, 2016.
  • [11] Y. Taşyurdu, “Generalized (p,q)-Fibonacci-Like Sequences and Their Properties,” Journal of Mathematics Research, vol. 11, no. 6, pp. 43-52, 2019.
  • [12] M. Edson, O. Yayenie, “A New Generalization of Fibonacci Sequence & Extended Binet’s Formula,” Integers, vol. 9, pp. 639–654, 2009.
  • [13] G. Bilgici, “Two Generalizations of Lucas Sequence,” Applied Mathematics and Computation, vol. 245, pp. 526–538, 2014.
  • [14] O. Yayenie, “A Note on Generalized Fibonacci Sequence,” Applied Mathematics and Computation, vol. 217, pp. 5603-5611, 2011.
  • [15] S. P. Jun, K. H. Choi, “Some Properties of the Generalized Fibonacci Sequence {q_n } by Matrix Methods,” Korean Journal Mathematics., vol. 24, no. 4, pp. 681-691, 2016.
  • [16] E. Tan, “Some Properties of the bi-Periodic Horadam Sequences,” Notes on Number Theory and Discrete Mathematics, vol. 23, no. 4, pp. 56-65, 2017.
  • [17] Ş. Uygun, E. Owusu, “A New Generalization of Jacobsthal Numbers (Bi-Periodic Jacobsthal Sequence),” Journal of Mathematical Analysis, vol. 7 no. 4, pp. 28-39, 2016.
  • [18] Ş. Uygun, E. Owusu, “A New Generalization of Jacobsthal Lucas Numbers (Bi-Periodic Jacobsthal Lucas Sequence),” Journal of Advances in Mathematics and Computer Science, vol. 34, no. 5, pp. 1-13, 2019.
  • [19] Ş. Uygun, H. Karatas, “Bi-Periodic Pell Sequence,” Academic Journal of Applied Mathematical Sciences, vol. 6 no. 7, pp. 136-144, 2020.
  • [20] Ş. Uygun, H. Karatas, “A New Generalization of Pell-Lucas Numbers (Bi-Periodic Pell-Lucas Sequence),” Communications in Mathematics and Applications, vol. 10, no. 3, pp. 469-479, 2019.
Year 2023, , 1 - 13, 28.02.2023
https://doi.org/10.16984/saufenbilder.1148618

Abstract

References

  • [1] A. F. Horadam, “A Generalized Fibonacci Sequence,” The American Mathematical Monthly, vol. 68, no. 5, pp. 455-459, 1961.
  • [2] S. Falcon, A. Plaza, “On the Fibonacci k-Numbers,” Chaos, Solitons & Fractals, vol. 32, no. 5, pp. 1615-24, 2007.
  • [3] S. Falcon, “On the k-Lucas Numbers,” International Journal of Contemporary Mathematical Sciences, vol. 6, no. 21, pp. 1039-1050, 2011.
  • [4] T. Koshy, “Fibonacci and Lucas Numbers with Applications,” vol. 1, 2nd Edition, Wiley-Interscience Publications, New York, 2017, 704p.
  • [5] Y. Taşyurdu, N. Çobanoğlu, Z. Dilmen, “On the a New Family of k-Fibonacci Numbers,” Erzincan University Journal of Science and Technology, vol. 9 no. 1, pp. 95-101, 2016.
  • [6] Y. K. Panwar, “A Note on the Generalized k-Fibonacci Sequence,” MTU Journal of Engineering and Natural Sciences, vol. 2, no. 2, pp. 29-39, 2021.
  • [7] O. Deveci, Y. Aküzüm, “The Recurrence Sequences via Hurwitz Matrices,” Annals of the Alexandru Ioan Cuza University-Mathematics, vol. 63, no. 3, pp. 1-13, 2017.
  • [8] A. F. Horadam, “Basic Properties of a Certain Generalized Sequence of Numbers,” Fibonacci Quarterly, vol. 3, no. 3, 161–176, 1965.
  • [9] A. Suvarnamani, M. Tatong, “Some Properties of (p,q)-Fibonacci Numbers,” Science and Technology RMUTT Journal, vol. 5, no. 2, pp. 17-21, 2015.
  • [10] A. Suvarnamani, “Some Properties of (p,q)-Lucas Number,” Kyungpook Mathematical Journal, vol. 56, pp. 367-370, 2016.
  • [11] Y. Taşyurdu, “Generalized (p,q)-Fibonacci-Like Sequences and Their Properties,” Journal of Mathematics Research, vol. 11, no. 6, pp. 43-52, 2019.
  • [12] M. Edson, O. Yayenie, “A New Generalization of Fibonacci Sequence & Extended Binet’s Formula,” Integers, vol. 9, pp. 639–654, 2009.
  • [13] G. Bilgici, “Two Generalizations of Lucas Sequence,” Applied Mathematics and Computation, vol. 245, pp. 526–538, 2014.
  • [14] O. Yayenie, “A Note on Generalized Fibonacci Sequence,” Applied Mathematics and Computation, vol. 217, pp. 5603-5611, 2011.
  • [15] S. P. Jun, K. H. Choi, “Some Properties of the Generalized Fibonacci Sequence {q_n } by Matrix Methods,” Korean Journal Mathematics., vol. 24, no. 4, pp. 681-691, 2016.
  • [16] E. Tan, “Some Properties of the bi-Periodic Horadam Sequences,” Notes on Number Theory and Discrete Mathematics, vol. 23, no. 4, pp. 56-65, 2017.
  • [17] Ş. Uygun, E. Owusu, “A New Generalization of Jacobsthal Numbers (Bi-Periodic Jacobsthal Sequence),” Journal of Mathematical Analysis, vol. 7 no. 4, pp. 28-39, 2016.
  • [18] Ş. Uygun, E. Owusu, “A New Generalization of Jacobsthal Lucas Numbers (Bi-Periodic Jacobsthal Lucas Sequence),” Journal of Advances in Mathematics and Computer Science, vol. 34, no. 5, pp. 1-13, 2019.
  • [19] Ş. Uygun, H. Karatas, “Bi-Periodic Pell Sequence,” Academic Journal of Applied Mathematical Sciences, vol. 6 no. 7, pp. 136-144, 2020.
  • [20] Ş. Uygun, H. Karatas, “A New Generalization of Pell-Lucas Numbers (Bi-Periodic Pell-Lucas Sequence),” Communications in Mathematics and Applications, vol. 10, no. 3, pp. 469-479, 2019.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Yasemin Taşyurdu 0000-0002-9011-8269

Naime Şeyda Türkoğlu 0000-0003-2301-3958

Publication Date February 28, 2023
Submission Date July 25, 2022
Acceptance Date October 30, 2022
Published in Issue Year 2023

Cite

APA Taşyurdu, Y., & Türkoğlu, N. Ş. (2023). Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences. Sakarya University Journal of Science, 27(1), 1-13. https://doi.org/10.16984/saufenbilder.1148618
AMA Taşyurdu Y, Türkoğlu NŞ. Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences. SAUJS. February 2023;27(1):1-13. doi:10.16984/saufenbilder.1148618
Chicago Taşyurdu, Yasemin, and Naime Şeyda Türkoğlu. “Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences”. Sakarya University Journal of Science 27, no. 1 (February 2023): 1-13. https://doi.org/10.16984/saufenbilder.1148618.
EndNote Taşyurdu Y, Türkoğlu NŞ (February 1, 2023) Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences. Sakarya University Journal of Science 27 1 1–13.
IEEE Y. Taşyurdu and N. Ş. Türkoğlu, “Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences”, SAUJS, vol. 27, no. 1, pp. 1–13, 2023, doi: 10.16984/saufenbilder.1148618.
ISNAD Taşyurdu, Yasemin - Türkoğlu, Naime Şeyda. “Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences”. Sakarya University Journal of Science 27/1 (February 2023), 1-13. https://doi.org/10.16984/saufenbilder.1148618.
JAMA Taşyurdu Y, Türkoğlu NŞ. Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences. SAUJS. 2023;27:1–13.
MLA Taşyurdu, Yasemin and Naime Şeyda Türkoğlu. “Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences”. Sakarya University Journal of Science, vol. 27, no. 1, 2023, pp. 1-13, doi:10.16984/saufenbilder.1148618.
Vancouver Taşyurdu Y, Türkoğlu NŞ. Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences. SAUJS. 2023;27(1):1-13.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.