Research Article
BibTex RIS Cite

The Interaction of AFB1 Aflatoxin and Lactococcin A; Molecular Docking

Year 2024, , 1352 - 1359, 31.12.2024
https://doi.org/10.16984/saufenbilder.1225098

Abstract

Aflatoxins (AF), which cause diseases in humans and animals, are mycotoxins produced by certain types of fungi. Bacteriocins are natural antimicrobial substances synthesized by bacteria. These substances that are in protein structure, generally have short chain and small molecular weight. According to the classification made by Klaenhammer, especially considering Gram (+) bacteria, bacteriocins are divided into 4 different classes. These are Class I (Class IA, Class IB), Class II (Class IIA, Class IIB, Class IIC, Class IID), Class III and Class IV. Enterocin A, Sakacin A, Lactococcin A can be given as examples of Class II bacteriocins. In this study, we examined the interaction of AFB1 aflatoxin (ligand) and Lactococcin A (protein) bacteriocin, which is in Class II, using Molecular Docking. The results showed that Lactococcin A molecule have the potential to be used for aflatoxin degradation.

References

  • S. Ahlberg, D. Randolph, S. Okoth, J. Lindahl, “Aflatoxin binders in foods for human consumption—can this be promoted safely and ethically? ”Toxins, vol. 11, no. 7, pp. 410, 2019.
  • J. M. Misihairabgwi, C. N. Ezekiel, M. Sulyok, G. S. Shephard, R. Krska, “Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007–2016),” Critical reviews in food science and nutrition, vol. 59, pp. 43-58, 2019.
  • F. Peles, P. Sipos, S. Kovács, Z. Gy˝ori, I. Pócsi, T. Pusztahelyi, “Biological Control and Mitigation of Aflatoxin Contamination in Commodities,” Toxins vol. 13, pp. 104, 2021.
  • IARC (2017). Agents Classified by the IARC Monographs Volumes 1-115.
  • Y. Liu, H. Mao, C. Hu, T. Tron, J. Lin, J.Wang, B. Sun, “Molecular docking studies and in vitro degradation of four aflatoxins (AFB1, AFB2, AFG1, and AFG2) by a recombinant laccase from Saccharomyces cerevisiae,” Journal of food science, vol. 85, no. 4, pp. 1353-1360, 2020.
  • S. Agriopoulou, A. Koliadima, G. Karaiskakis, J. Kapolos, “Kinetic study of aflatoxins' degradation in the presence of ozone,” Food Control, vol. 61, pp. 221-226, 2016.
  • A. Raiola, G. C. Tenore, L. Manyes, G. Meca, A. Ritieni, “Risk analysis of main mycotoxins occurring in food for children: An overview,” Food and Chemical Toxicology, vol. 84, pp. 169-180, 2015.
  • M. Y. Ayub, D. S. Sachan, “Dietary factors affecting aflatoxin Bi carcinogenicity,” Malaysian Journal of Nutrition, vol. 3, pp. 161-179, 1997.
  • M. Hulin, N. Bemrah, A. Nougadère, J. Volatier, V. Sirot, J. C. Leblanc, “Assessment of infant exposure to food chemicals: The French Total Diet Study design,” Food Additives & Contaminants: Part A, vol. 31, pp. 1226-1239, 2014.
  • D. R. Mili´cevi´c, J. Mileševi´c, M. Gurinovi´c, S. Jankovi´c, J. Ðinovi´c-Stojanovi´c, M. Zekovi´c, M. Glibeti´c, “Dietary Exposure and Risk Assessment of Aflatoxin M1 for Child Aged 1 to 9 Years Old in Serbia,” Nutrients, vol. 13, pp. 4450, 2021.
  • T. Morales-Moo, E. Hernández-Camarillo, M. Carvajal-Moreno, M. Vargas-Ortiz, V. Robles-Olvera, M.A. Salgado-Cervantes, “Human Health Risk Associated with the Consumption of Aflatoxins in Popcorn,” Risk Management and Healthcare Policy, vol. 13, pp. 2583-2591, 2020.
  • H. El-Nezami, P. Kankaanpaa, S. Salminen, J. Ahokas,” Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1,” Food and chemical toxicology, vol. 36, no. 4, pp. 321-326, 1998.
  • B. Grenier, A.P. Loureiro-Bracarense, J. F. Leslie, I. P. Oswald, “Physical and chemical methods for mycotoxin decontamination in maize,” Mycotoxin Reduct. Grain Chains, pp. 116-129, 2014.
  • W. Iram, T. Anjum, M. Iqbal, A. Ghaffar, M. Abbas, “Mass spectrometric identification and toxicity assessment of degraded products of aflatoxin B1 and B2 by Corymbia citriodora aqueous extracts,” Scientific reports, vol. 5, no. 1, pp. 1-15, 2015.
  • A. W. Negash, B. A. Tsehai, “Current applications of bacteriocin,” International Journal of Microbiology, pp. 1–7, 2020, 2020.
  • V. P. Rodali, V. K. Lingala, A. P. Karlapudi, M. Indira, T. C. Venkateswarulu, D. John Babu, “Biosynthesis and potential application of bacteriocins,” Journal of Pure and Applied Microbiology, vol. 7, pp. 2933-2945, 2013.
  • L. H. Deegan, P. D. Cotter, C. Hill, P. Ross, “Bacteriocins: biological tools for bio-preservation and shelf-life extension,” International dairy journal, vol. 16, no. 9, pp. 1058-1071, 2006.
  • P. D. Cotter, C. Hill, R. P. Ross, “Bacteriocins: developing innate immunity for food,” Nature Reviews Microbiology, vol. 3, no. 10, pp. 777-788, 2005.
  • Ş. Kurt, Ö. Zorba, “Bakteriyosinler ve Gıdalarda Kullanım Olanakları,” Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, vol. 16, no. 1, pp. 77-83, 2005.
  • S. Ennahar, T. Sashihara, K. Sonomoto, A. Ishizaki, “Class IIa bacteriocins: biosynthesis, structure and activity,” FEMS microbiology reviews, vol. 24, no. 1, pp. 85-106, 2000.
  • I. F. Ness, D. B. Diep, Y. Ike, “Enterococcal Bacteriocins and Antimicrobial Proteins that Contribute to Niche Control. In: Enterococci: From Commensals to Leading Causes of Drug Resistant Infection,” Massachusetts Eye and Ear Infirmary, Boston, 2014. PMID: 24649514.
  • P. D. Cotter, R. P. Ross, C. Hill, “Bacteriocins—a viable alternative to antibiotics?,” Nature Reviews Microbiology, vol. 11 no. 2, pp. 95-105, 2013.
  • A. Zapaśnik, B. Sokołowska, M. Bryła, “Role of Lactic Acid Bacteria in Food Preservation and Safety,” Foods, vol. 11, pp. 1283, 2022.
  • P. Petrova, A. Arsov, F. Tsvetanova, T. Parvanova-Mancheva, E. Vasileva, L. Tsigoriyna, K. Petrov, “The Complex Role of Lactic Acid Bacteria in Food Detoxification,” Nutrients, vol. 14, pp. 2038, 2022.
  • S. Yeganeh, M. Adel, A. Nosratimovafagh, M. A. Dawood, “The effect of Lactococcus lactis subsp. Lactis ptcc 1403 on the growth performance, digestive enzymes activity, antioxidative status, immune response, and disease resistance of rainbow trout (Oncorhynchus mykiss),” Probiotics and Antimicrobial Proteins, vol. 13, no. 6, pp. 1723-1733, 2021.
  • M. J. Van Belkum, J. Kok, G. Venema, H. Holo, I. F. Nes, W. N. Konings, T Abee, “The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner,” Journal of bacteriology, vol. 173, no. 24, pp. 7934-7941, 1991.
  • H. Holo, I. F. Nes, “Transformation of Lactococcus by electroporation. In Electroporation protocols for microorganisms,” Humana Press, pp. 195-199, 1995.
  • G. M. Morris, R. Huey, A. J. Olson, “Using autodock for ligand‐receptor docking,” Current Protocols in Bioinformatics, vol. 24, no. 1, pp. 8-14, 2008.
  • R. Huey, G. M. Morris, S. Forli, “Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial,” The Scripps Research Institute Molecular Graphics Laboratory, vol. 16, pp. 2785–2791, 2012.
  • V. Ostry, F. Malir, J. Toman, Y. Grosse, “Mycotoxins as human carcinogens—the IARC Monographs classification,” Mycotoxin research, vol. 33no. 1, pp. 65-73. 2017.
  • O. J. Egbere, C. E. Odu, I. A. Onyimba, A. C. Ngene, M. M. Dashen, A. O. Ogaji, E. E. Entonu, “Inhibitory Effect of Lactic Acid Bacteria on Aflatoxin B1 Producing Aspergillus flavus Isolated from Garri,” European Journal of Biology and Biotechnology, vol. 3, no. 1, pp. 24-28, 2022.
  • D. Sklan, E. Klipper, A. Friedman, M. Shelly, B. Makovsky, “The effect of chronic feeding of diacetoxyscirpenol, T-2 toxin, and aflatoxin on performance, health, and antibody production in chicks,” Journal of Applied Poultry Research, vol. 10, no. 1, pp. 79-85, 2001.
  • .L. Ayres, D.J. Lee, J. H. Wales, R. O. Sinnhuber, “Aflatoxin structure and hepatocarcinogenicity in rainbow trout (Salmo gairdneri),” Journal of the National Cancer Institute, vol. 46, no. 3, pp. 561-564, 1971.
  • A. B. Bodine, S. F. Fisher, S. Gangjee, “Effect of aflatoxin B1 and major metabolites on phytohemeagglutinin-stimulated lymphoblastogenesis of bovine lymphocytes,” Journal of Dairy Science, vol. 67, no. 1, pp. 110-114, 1984.
  • G. N. Wogan, S. Paglialunga, P. M. Newberne, “Carcinogenic effects of low dietary levels of aflatoxin B1 in rats,” Food and Cosmetics Toxicology, vol. 12, no. 5-6, pp. 681-685, 1974.
  • J. M. Cullen, B. H. Ruebner, L. S. Hsieh, D. M. Hyde, D. P. Hsieh, “Carcinogenicity of dietary aflatoxin M1 in male Fischer rats compared to aflatoxin B1,” Cancer Research, vol. 47, no. 7, pp. 1913-1917, 1987.
  • M. Peraica, B. Radić, A. Lucić, M. Pavlović, “Toxic effects of mycotoxins in humans,” Bulletin of the World Health Organization, vol. 77, no. 9, pp. 754, 1999.
  • Ç. Sezer, A. Güven, N. B. Oral, L. Vatansever, “Detoxification of aflatoxin B_1 by bacteriocins and bacteriocinogenic lactic acid bacteria,” Turkish Journal of Veterinary & Animal Sciences, vol. 37, no. 5, 5pp. 94-601, 2013.
  • X. Tao, Y. Huang, C. Wang, F. Chen, L. Yang, L. Ling, X. “Chen, Recent developments in molecular docking technology applied in food science: a review,” International Journal of Food Science & Technology, vol. 55, pp. 33-45, 2020.
  • P. Śledź, A. Caflisch, “Protein structure-based drug design: From docking to molecular Dynamics,” Current opinion in structural biology, vol. 48, pp. 93-102, 2018.
Year 2024, , 1352 - 1359, 31.12.2024
https://doi.org/10.16984/saufenbilder.1225098

Abstract

References

  • S. Ahlberg, D. Randolph, S. Okoth, J. Lindahl, “Aflatoxin binders in foods for human consumption—can this be promoted safely and ethically? ”Toxins, vol. 11, no. 7, pp. 410, 2019.
  • J. M. Misihairabgwi, C. N. Ezekiel, M. Sulyok, G. S. Shephard, R. Krska, “Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007–2016),” Critical reviews in food science and nutrition, vol. 59, pp. 43-58, 2019.
  • F. Peles, P. Sipos, S. Kovács, Z. Gy˝ori, I. Pócsi, T. Pusztahelyi, “Biological Control and Mitigation of Aflatoxin Contamination in Commodities,” Toxins vol. 13, pp. 104, 2021.
  • IARC (2017). Agents Classified by the IARC Monographs Volumes 1-115.
  • Y. Liu, H. Mao, C. Hu, T. Tron, J. Lin, J.Wang, B. Sun, “Molecular docking studies and in vitro degradation of four aflatoxins (AFB1, AFB2, AFG1, and AFG2) by a recombinant laccase from Saccharomyces cerevisiae,” Journal of food science, vol. 85, no. 4, pp. 1353-1360, 2020.
  • S. Agriopoulou, A. Koliadima, G. Karaiskakis, J. Kapolos, “Kinetic study of aflatoxins' degradation in the presence of ozone,” Food Control, vol. 61, pp. 221-226, 2016.
  • A. Raiola, G. C. Tenore, L. Manyes, G. Meca, A. Ritieni, “Risk analysis of main mycotoxins occurring in food for children: An overview,” Food and Chemical Toxicology, vol. 84, pp. 169-180, 2015.
  • M. Y. Ayub, D. S. Sachan, “Dietary factors affecting aflatoxin Bi carcinogenicity,” Malaysian Journal of Nutrition, vol. 3, pp. 161-179, 1997.
  • M. Hulin, N. Bemrah, A. Nougadère, J. Volatier, V. Sirot, J. C. Leblanc, “Assessment of infant exposure to food chemicals: The French Total Diet Study design,” Food Additives & Contaminants: Part A, vol. 31, pp. 1226-1239, 2014.
  • D. R. Mili´cevi´c, J. Mileševi´c, M. Gurinovi´c, S. Jankovi´c, J. Ðinovi´c-Stojanovi´c, M. Zekovi´c, M. Glibeti´c, “Dietary Exposure and Risk Assessment of Aflatoxin M1 for Child Aged 1 to 9 Years Old in Serbia,” Nutrients, vol. 13, pp. 4450, 2021.
  • T. Morales-Moo, E. Hernández-Camarillo, M. Carvajal-Moreno, M. Vargas-Ortiz, V. Robles-Olvera, M.A. Salgado-Cervantes, “Human Health Risk Associated with the Consumption of Aflatoxins in Popcorn,” Risk Management and Healthcare Policy, vol. 13, pp. 2583-2591, 2020.
  • H. El-Nezami, P. Kankaanpaa, S. Salminen, J. Ahokas,” Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1,” Food and chemical toxicology, vol. 36, no. 4, pp. 321-326, 1998.
  • B. Grenier, A.P. Loureiro-Bracarense, J. F. Leslie, I. P. Oswald, “Physical and chemical methods for mycotoxin decontamination in maize,” Mycotoxin Reduct. Grain Chains, pp. 116-129, 2014.
  • W. Iram, T. Anjum, M. Iqbal, A. Ghaffar, M. Abbas, “Mass spectrometric identification and toxicity assessment of degraded products of aflatoxin B1 and B2 by Corymbia citriodora aqueous extracts,” Scientific reports, vol. 5, no. 1, pp. 1-15, 2015.
  • A. W. Negash, B. A. Tsehai, “Current applications of bacteriocin,” International Journal of Microbiology, pp. 1–7, 2020, 2020.
  • V. P. Rodali, V. K. Lingala, A. P. Karlapudi, M. Indira, T. C. Venkateswarulu, D. John Babu, “Biosynthesis and potential application of bacteriocins,” Journal of Pure and Applied Microbiology, vol. 7, pp. 2933-2945, 2013.
  • L. H. Deegan, P. D. Cotter, C. Hill, P. Ross, “Bacteriocins: biological tools for bio-preservation and shelf-life extension,” International dairy journal, vol. 16, no. 9, pp. 1058-1071, 2006.
  • P. D. Cotter, C. Hill, R. P. Ross, “Bacteriocins: developing innate immunity for food,” Nature Reviews Microbiology, vol. 3, no. 10, pp. 777-788, 2005.
  • Ş. Kurt, Ö. Zorba, “Bakteriyosinler ve Gıdalarda Kullanım Olanakları,” Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, vol. 16, no. 1, pp. 77-83, 2005.
  • S. Ennahar, T. Sashihara, K. Sonomoto, A. Ishizaki, “Class IIa bacteriocins: biosynthesis, structure and activity,” FEMS microbiology reviews, vol. 24, no. 1, pp. 85-106, 2000.
  • I. F. Ness, D. B. Diep, Y. Ike, “Enterococcal Bacteriocins and Antimicrobial Proteins that Contribute to Niche Control. In: Enterococci: From Commensals to Leading Causes of Drug Resistant Infection,” Massachusetts Eye and Ear Infirmary, Boston, 2014. PMID: 24649514.
  • P. D. Cotter, R. P. Ross, C. Hill, “Bacteriocins—a viable alternative to antibiotics?,” Nature Reviews Microbiology, vol. 11 no. 2, pp. 95-105, 2013.
  • A. Zapaśnik, B. Sokołowska, M. Bryła, “Role of Lactic Acid Bacteria in Food Preservation and Safety,” Foods, vol. 11, pp. 1283, 2022.
  • P. Petrova, A. Arsov, F. Tsvetanova, T. Parvanova-Mancheva, E. Vasileva, L. Tsigoriyna, K. Petrov, “The Complex Role of Lactic Acid Bacteria in Food Detoxification,” Nutrients, vol. 14, pp. 2038, 2022.
  • S. Yeganeh, M. Adel, A. Nosratimovafagh, M. A. Dawood, “The effect of Lactococcus lactis subsp. Lactis ptcc 1403 on the growth performance, digestive enzymes activity, antioxidative status, immune response, and disease resistance of rainbow trout (Oncorhynchus mykiss),” Probiotics and Antimicrobial Proteins, vol. 13, no. 6, pp. 1723-1733, 2021.
  • M. J. Van Belkum, J. Kok, G. Venema, H. Holo, I. F. Nes, W. N. Konings, T Abee, “The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner,” Journal of bacteriology, vol. 173, no. 24, pp. 7934-7941, 1991.
  • H. Holo, I. F. Nes, “Transformation of Lactococcus by electroporation. In Electroporation protocols for microorganisms,” Humana Press, pp. 195-199, 1995.
  • G. M. Morris, R. Huey, A. J. Olson, “Using autodock for ligand‐receptor docking,” Current Protocols in Bioinformatics, vol. 24, no. 1, pp. 8-14, 2008.
  • R. Huey, G. M. Morris, S. Forli, “Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial,” The Scripps Research Institute Molecular Graphics Laboratory, vol. 16, pp. 2785–2791, 2012.
  • V. Ostry, F. Malir, J. Toman, Y. Grosse, “Mycotoxins as human carcinogens—the IARC Monographs classification,” Mycotoxin research, vol. 33no. 1, pp. 65-73. 2017.
  • O. J. Egbere, C. E. Odu, I. A. Onyimba, A. C. Ngene, M. M. Dashen, A. O. Ogaji, E. E. Entonu, “Inhibitory Effect of Lactic Acid Bacteria on Aflatoxin B1 Producing Aspergillus flavus Isolated from Garri,” European Journal of Biology and Biotechnology, vol. 3, no. 1, pp. 24-28, 2022.
  • D. Sklan, E. Klipper, A. Friedman, M. Shelly, B. Makovsky, “The effect of chronic feeding of diacetoxyscirpenol, T-2 toxin, and aflatoxin on performance, health, and antibody production in chicks,” Journal of Applied Poultry Research, vol. 10, no. 1, pp. 79-85, 2001.
  • .L. Ayres, D.J. Lee, J. H. Wales, R. O. Sinnhuber, “Aflatoxin structure and hepatocarcinogenicity in rainbow trout (Salmo gairdneri),” Journal of the National Cancer Institute, vol. 46, no. 3, pp. 561-564, 1971.
  • A. B. Bodine, S. F. Fisher, S. Gangjee, “Effect of aflatoxin B1 and major metabolites on phytohemeagglutinin-stimulated lymphoblastogenesis of bovine lymphocytes,” Journal of Dairy Science, vol. 67, no. 1, pp. 110-114, 1984.
  • G. N. Wogan, S. Paglialunga, P. M. Newberne, “Carcinogenic effects of low dietary levels of aflatoxin B1 in rats,” Food and Cosmetics Toxicology, vol. 12, no. 5-6, pp. 681-685, 1974.
  • J. M. Cullen, B. H. Ruebner, L. S. Hsieh, D. M. Hyde, D. P. Hsieh, “Carcinogenicity of dietary aflatoxin M1 in male Fischer rats compared to aflatoxin B1,” Cancer Research, vol. 47, no. 7, pp. 1913-1917, 1987.
  • M. Peraica, B. Radić, A. Lucić, M. Pavlović, “Toxic effects of mycotoxins in humans,” Bulletin of the World Health Organization, vol. 77, no. 9, pp. 754, 1999.
  • Ç. Sezer, A. Güven, N. B. Oral, L. Vatansever, “Detoxification of aflatoxin B_1 by bacteriocins and bacteriocinogenic lactic acid bacteria,” Turkish Journal of Veterinary & Animal Sciences, vol. 37, no. 5, 5pp. 94-601, 2013.
  • X. Tao, Y. Huang, C. Wang, F. Chen, L. Yang, L. Ling, X. “Chen, Recent developments in molecular docking technology applied in food science: a review,” International Journal of Food Science & Technology, vol. 55, pp. 33-45, 2020.
  • P. Śledź, A. Caflisch, “Protein structure-based drug design: From docking to molecular Dynamics,” Current opinion in structural biology, vol. 48, pp. 93-102, 2018.
There are 40 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Arzu Özgen 0000-0003-2104-6019

Nihan Ünlü 0000-0002-5410-6551

Canan Aksu Canbay 0000-0002-5151-4576

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date December 27, 2022
Acceptance Date December 26, 2024
Published in Issue Year 2024

Cite

APA Özgen, A., Ünlü, N., & Aksu Canbay, C. (2024). The Interaction of AFB1 Aflatoxin and Lactococcin A; Molecular Docking. Sakarya University Journal of Science, 28(6), 1352-1359. https://doi.org/10.16984/saufenbilder.1225098
AMA Özgen A, Ünlü N, Aksu Canbay C. The Interaction of AFB1 Aflatoxin and Lactococcin A; Molecular Docking. SAUJS. December 2024;28(6):1352-1359. doi:10.16984/saufenbilder.1225098
Chicago Özgen, Arzu, Nihan Ünlü, and Canan Aksu Canbay. “The Interaction of AFB1 Aflatoxin and Lactococcin A; Molecular Docking”. Sakarya University Journal of Science 28, no. 6 (December 2024): 1352-59. https://doi.org/10.16984/saufenbilder.1225098.
EndNote Özgen A, Ünlü N, Aksu Canbay C (December 1, 2024) The Interaction of AFB1 Aflatoxin and Lactococcin A; Molecular Docking. Sakarya University Journal of Science 28 6 1352–1359.
IEEE A. Özgen, N. Ünlü, and C. Aksu Canbay, “The Interaction of AFB1 Aflatoxin and Lactococcin A; Molecular Docking”, SAUJS, vol. 28, no. 6, pp. 1352–1359, 2024, doi: 10.16984/saufenbilder.1225098.
ISNAD Özgen, Arzu et al. “The Interaction of AFB1 Aflatoxin and Lactococcin A; Molecular Docking”. Sakarya University Journal of Science 28/6 (December 2024), 1352-1359. https://doi.org/10.16984/saufenbilder.1225098.
JAMA Özgen A, Ünlü N, Aksu Canbay C. The Interaction of AFB1 Aflatoxin and Lactococcin A; Molecular Docking. SAUJS. 2024;28:1352–1359.
MLA Özgen, Arzu et al. “The Interaction of AFB1 Aflatoxin and Lactococcin A; Molecular Docking”. Sakarya University Journal of Science, vol. 28, no. 6, 2024, pp. 1352-9, doi:10.16984/saufenbilder.1225098.
Vancouver Özgen A, Ünlü N, Aksu Canbay C. The Interaction of AFB1 Aflatoxin and Lactococcin A; Molecular Docking. SAUJS. 2024;28(6):1352-9.