Research Article
BibTex RIS Cite

Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers

Year 2023, , 1122 - 1127, 18.10.2023
https://doi.org/10.16984/saufenbilder.1235571

Abstract

Let (M_k) be the sequence of Mulatu numbers defined by M_0=4, M_1=1, M_k=M_(k-1)+M_(k-2) and (F_k) be the Fibonacci sequence given by the recurrence F_k=F_(k-1)+F_(k-2) with the initial conditions F_0=0, F_1=1 for k≥2. In this paper, we showed that all Mulatu numbers, that are concatenations of two Fibonacci numbers are 11,28. That is, we solved the equation M_k=〖10〗^d F_m+F_n, where d indicates the number of digits of F_n. We found the solutions of this equation as (k,m,n,d)∈{(4,2,2,1),(6,3,6,1)}. Moreover the solutions of this equation displayed as M_4=(F_2 F_2 ) ̅=11 and M_6=(F_3 F_6 ) ̅=28. Here the main tools are linear forms in logarithms and Baker Davenport basis reduction method.

References

  • M. Lemma, ‘‘The Mulatu Numbers’’ Advances and Applications in Mathematical Sciences, vol. 10, no. 4, pp. 431-440, 2011.
  • W.D. Banks, F. Luca, ‘‘Concatenations with binary recurrent sequences’’ Journal of Integer Sequences, vol. 8, no. 5, pp. 1-3, 2005.
  • M. Alan, ‘‘On Concatenations of Fibonacci and Lucas Numbers’’ Bulletin of the Iranian Mathematical Society, vol. 48, no. 5, pp. 2725-2741, 2022.
  • M. Lemma, J. Lambrigt, “Some Fascinating theorems of Mulatu Numbers”, Hawai University International Conference, 2016.
  • N. Irmak, Z. Siar, R. Keskin, “On the sum of three arbitrary Fibonacci and Lucas numbers” Notes on Number Theory and Discrete Mathematics, vol. 25, no. 4, pp. 96-101, 2019.
  • Y. Bugeaud, ‘‘Linear Forms in Logarithms and Applications’’ IRMA Lectures in Mathematics and Theoretical Physics 28, Zurich, European Mathematical Society, 1-176, 2018.
  • Y. Bugeaud, M. Mignotte S. Siksek, ‘‘Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers’’ Annals of Mathematics, vol. 163, no. 3, pp. 969-1018, 2006.
  • J.J. Bravo, C.A. Gomez, F. Luca, ‘‘Powers of two as sums of two k-Fibonacci numbers’’ Miskolc Mathematical Notes, vol. 17, no. 1, pp. 85-100, 2016.
  • A. Dujella, A. Pethò, ‘‘A generalization of a theorem of Baker and Davenport’’ Quarterly Journal of Mathematics Oxford series (2), vol. 49, no. 3, pp. 291-306, 1998.
  • B. M. M. de Weger, ‘‘Algorithms for Diophantine Equations’’ CWI Tracts 65, Stichting Mathematisch Centrum, Amsterdam, 1-69, 1989.
Year 2023, , 1122 - 1127, 18.10.2023
https://doi.org/10.16984/saufenbilder.1235571

Abstract

References

  • M. Lemma, ‘‘The Mulatu Numbers’’ Advances and Applications in Mathematical Sciences, vol. 10, no. 4, pp. 431-440, 2011.
  • W.D. Banks, F. Luca, ‘‘Concatenations with binary recurrent sequences’’ Journal of Integer Sequences, vol. 8, no. 5, pp. 1-3, 2005.
  • M. Alan, ‘‘On Concatenations of Fibonacci and Lucas Numbers’’ Bulletin of the Iranian Mathematical Society, vol. 48, no. 5, pp. 2725-2741, 2022.
  • M. Lemma, J. Lambrigt, “Some Fascinating theorems of Mulatu Numbers”, Hawai University International Conference, 2016.
  • N. Irmak, Z. Siar, R. Keskin, “On the sum of three arbitrary Fibonacci and Lucas numbers” Notes on Number Theory and Discrete Mathematics, vol. 25, no. 4, pp. 96-101, 2019.
  • Y. Bugeaud, ‘‘Linear Forms in Logarithms and Applications’’ IRMA Lectures in Mathematics and Theoretical Physics 28, Zurich, European Mathematical Society, 1-176, 2018.
  • Y. Bugeaud, M. Mignotte S. Siksek, ‘‘Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers’’ Annals of Mathematics, vol. 163, no. 3, pp. 969-1018, 2006.
  • J.J. Bravo, C.A. Gomez, F. Luca, ‘‘Powers of two as sums of two k-Fibonacci numbers’’ Miskolc Mathematical Notes, vol. 17, no. 1, pp. 85-100, 2016.
  • A. Dujella, A. Pethò, ‘‘A generalization of a theorem of Baker and Davenport’’ Quarterly Journal of Mathematics Oxford series (2), vol. 49, no. 3, pp. 291-306, 1998.
  • B. M. M. de Weger, ‘‘Algorithms for Diophantine Equations’’ CWI Tracts 65, Stichting Mathematisch Centrum, Amsterdam, 1-69, 1989.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Fatih Erduvan 0000-0001-7254-2296

Merve Güney Duman 0000-0002-6340-4817

Early Pub Date October 5, 2023
Publication Date October 18, 2023
Submission Date January 16, 2023
Acceptance Date June 8, 2023
Published in Issue Year 2023

Cite

APA Erduvan, F., & Güney Duman, M. (2023). Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers. Sakarya University Journal of Science, 27(5), 1122-1127. https://doi.org/10.16984/saufenbilder.1235571
AMA Erduvan F, Güney Duman M. Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers. SAUJS. October 2023;27(5):1122-1127. doi:10.16984/saufenbilder.1235571
Chicago Erduvan, Fatih, and Merve Güney Duman. “Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers”. Sakarya University Journal of Science 27, no. 5 (October 2023): 1122-27. https://doi.org/10.16984/saufenbilder.1235571.
EndNote Erduvan F, Güney Duman M (October 1, 2023) Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers. Sakarya University Journal of Science 27 5 1122–1127.
IEEE F. Erduvan and M. Güney Duman, “Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers”, SAUJS, vol. 27, no. 5, pp. 1122–1127, 2023, doi: 10.16984/saufenbilder.1235571.
ISNAD Erduvan, Fatih - Güney Duman, Merve. “Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers”. Sakarya University Journal of Science 27/5 (October 2023), 1122-1127. https://doi.org/10.16984/saufenbilder.1235571.
JAMA Erduvan F, Güney Duman M. Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers. SAUJS. 2023;27:1122–1127.
MLA Erduvan, Fatih and Merve Güney Duman. “Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers”. Sakarya University Journal of Science, vol. 27, no. 5, 2023, pp. 1122-7, doi:10.16984/saufenbilder.1235571.
Vancouver Erduvan F, Güney Duman M. Mulatu Numbers Which Are Concatenation of Two Fibonacci Numbers. SAUJS. 2023;27(5):1122-7.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.