Research Article
BibTex RIS Cite
Year 2024, , 1103 - 1114, 25.10.2024
https://doi.org/10.16984/saufenbilder.1281213

Abstract

References

  • W. D. Lawson, T. A. Wood, C. D. Newhouse, P. W. Jayawickrama, “Evaluating Existing Culvert for Load Capacity Allowing for Soil Structure Interaction”. Multidisciplinary Research in Transportation, 2010.
  • David Z. Yankelevsky., “Loads on Rigid Box Buried in Nonllinear Mdium”, Journal of Transportation Engineering, Vol. 115, No. 5, September, 1989. @asce, ISSN 0733-947X/89/0005-0461. Paper No. 23870.
  • K. Kim, C. Yoo, “Design Loading for Deeply Buried Box Culverts”, Highway Research Center, Auburn University, 2002.
  • J. L. Beaver, T. J. McGrath, B. Leonard, “Condition Assessment of Utah Highway Culverts and Determination of Culvert Performance Measures”, In Critical Transitions in Water and Environmental Resources Management, 2004, pp. 1-10.
  • M. Pimentel, P. Costa, C. Félix, J. Figueiras, “Behavior of reinforced concrete box culverts under high embankments”, Journal of Structural Engineering, vol.135, no.4, pp.366-375, 2009.
  • R. M. Bennett, S. M. Wood, E. C. Drumm, N. R. Rainwater, “Vertical loads on concrete box culverts under high embankments”, Journal of Bridge Engineering, vol. 10, no. 6, pp. 643-649, 2005.
  • A. Abolmaali, A. K. Garg, “Effect of Wheel live load on Shear Behaviour of Precast Reinforced Cocrete Box Culverts.” Journal of Bridge Egineering, Vol. 13, No.1, January 1, 2008, @ ASCE, ISSN 1084-0702/200/1-93-99.
  • D. L. Petersen, “Recommended design specifications for live load distribution to buried structures”, Transportation Research Board, vol. 647, 2010.
  • T. A. Wood, W. D. Lawson, P. W., Jayawickrama, C. D. Newhouse, “Evaluation of production models for load rating reinforced concrete box culverts”, Journal of Bridge Engineering, vol. 20, no.1, 04014057, 2015.
  • W. D. Lawson, T. A. Wood, C. D. Newhouse, P. W. Jayawickrama, “Evaluating existing culverts for load capacity allowing for soil structure interaction”, Texas DOT, Austin, TX, 2010.
  • T. A. Wood, W. D. Lawson, P. W. Jayawickrama, “Newhouse, Evaluation of Production Models for Load Rating Reinforced Concrete Box Culverts”, The Journal of Bridge Engineering, pp.1-12, 2014.
  • N. Kolate, M. Mathew, S. Mali, “Analysisi and Design of RCC Box Culvert”, International Journal of Scientific & Engineering Research, 5(12), 2014.
  • W. F. Chen, J. Y. Liew, “The Civil Engineering Handbook”, Second Edition, National University of Singapore, CRC Press. 2003.
  • J. Boussinesq, “Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques: Principalement au calcul des deformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur und petite partie de leur surface ou de leur intérieur; memoire suivi de notes étendues sur divers points de physique mathématique et d'analyse”, Gauthier-Villars, 1885.
  • R. A. Cook, D. Bloomquist, “Report on Evaluation of Precast Box Culvert Systems: Part 2-Design Live Loads on Box Culverts”, Department of Civil Engineering, University of Florida, Project No. 4910 4504 857 12. 2002.
  • ASCE, “Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations (SIDD)”, (ASCE 15-98), American Society of Civil Engineers, Reston, Virginia. 2000.
  • E. Winkler, “Die Lehre Von Elasticitaet Und Festigkeit”. 1st Edn., H. Dominicus, Prague, 1867.
  • M. Hetenyi, “Beams on elastic foundation, Waverly press, Baltimore, 1946.
  • S. Lee, J. H. Ryu, I. S. Kim, “Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea”, Landslides, vol. 4, pp. 327-338. 2007.
  • S. Karimi, O. Kisi, J. Shiri, O. Makarynskyy, “Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia”, Computers and Geosciences, vol. 52, pp. 50-59, 2013.
  • Y. Erzin, Y. Tuskan, “Prediction of standard penetration test (SPT) value in Izmir, Turkey using radial basis neural network”, Celal Bayar University Journal of Science, vol.13, no.2, pp.433-439, 2017.
  • S. A. Yildizel, Y. Tuskan, G. Kaplan, “Prediction of skid resistance value of glass fiber-reinforced tiling materials”, Advances in Civil Engineering, 2017.
  • B. Y. Dagli, Y. Tuskan, D. Uncu, “Artifıcial Neural Networks For Hydraulic Systems”, Research and Revıews In Engineering–Summer, 2019, 85.
  • Y. Tuskan, B. Y. Dagli, D. Uncu, “The Use Of Artifıcial Neural Networks (Anns) In Geotechnics”, Research and Revıews In Engineering–Summer, 2019, 225.
  • Y. Erzin, Y. Tuskan, “Prediction of Standard Penetration Test (SPT) Value in Izmir, Turkey using General Regression Neural Network”, In International Conference on Agricultural, Civil and Environmental Engineering (ACEE-16) April 2016, pp. 18-19.
  • Y. Erzin, Y. Tuskan, “The use of neural networks for predicting the factor of safety of soil against liquefaction”, Scientia Iranica, vol.26, no.5, pp. 2615-2623, 2019.
  • H. Sonmez, C. Gokceoglu, H. A. Nefeslioglu, A. Kayabasi, “Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation”. International Journal of Rock Mechanics and Mining Sciences, vol. 43, no.2, pp.224-235, 2006.
  • N. Q. Hung, M. S. Babel, S. Weesakul, N. K. Tripathi, “An artificial neural network model for rainfall forecasting in Bangkok, Thailand”, Hydrology and Earth System Sciences, vol. 13, no.8, pp.1413-1425, 2009.
  • E. Ebrahimi, M. Monjezi, M. R. Khalesi, D. J. Armaghani, “Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm”, Bulletin of Engineering Geology and the Environment, vol. 75, pp. 27-36, 2016.
  • T. K. Gupta, K. Raza, “Optimization of ANN architecture: a review on nature-inspired techniques”. Machine learning in bio-signal analysis and diagnostic imaging, pp.159-182, 2019.
  • N. Singh, A. Singh, M. Tripathy, “Selection of hidden layer neurons and best training method for ffnn in application of long-term load forecasting”. Journal of electrical engineering, vol.63, no.3, pp.153-161, 2012.
  • M. A. Shahin, H. R. Maier, M. B. Jaksa, “Data division for developing neural networks applied to geotechnical engineering”. Journal of Computing in Civil Engineering, vol.18, no.2, pp.105-114, 2004.

Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network

Year 2024, , 1103 - 1114, 25.10.2024
https://doi.org/10.16984/saufenbilder.1281213

Abstract

A box culvert, buried at shallow depths beneath roadways, may experience deflections caused by the dynamic impact of traffic loading and the vertical pressure exerted by the soil fill. A computational model commonly employed used to various engineering issues, including those in geotechnical applications, is the beam-on-elastic-foundation model. In this context, the Moment Distribution Method (MDM) must be applied to account for the elastic foundation. To achieve this, the internal forces acting on the ends of both exterior and interior walls are transferred to the beam-like bottom slab of the culvert, which rests on an elastic soil bed. Subsequently, the secondary internal forces are determined by refining the structural parameters, taking into account the characteristics of the elastic soil bed. This study presents the development and application of an Artificial Neural Network (ANN) model to predict the shear capacity of box culverts on elastic soil under traffic loading conditions. The proposed model is trained and validated using a comprehensive database of beam on elastic foundation solutions. The input parameters include the geometrical and mechanical properties of the culvert and the soil, as well as the loading conditions. The results of the ANN model show R2 values of 0.9633 and 0.9581 for the training and testing sets, respectively, indicating the model's excellent accuracy. These findings suggest that the ANN model can reliably predict the shear capacity of culverts.

References

  • W. D. Lawson, T. A. Wood, C. D. Newhouse, P. W. Jayawickrama, “Evaluating Existing Culvert for Load Capacity Allowing for Soil Structure Interaction”. Multidisciplinary Research in Transportation, 2010.
  • David Z. Yankelevsky., “Loads on Rigid Box Buried in Nonllinear Mdium”, Journal of Transportation Engineering, Vol. 115, No. 5, September, 1989. @asce, ISSN 0733-947X/89/0005-0461. Paper No. 23870.
  • K. Kim, C. Yoo, “Design Loading for Deeply Buried Box Culverts”, Highway Research Center, Auburn University, 2002.
  • J. L. Beaver, T. J. McGrath, B. Leonard, “Condition Assessment of Utah Highway Culverts and Determination of Culvert Performance Measures”, In Critical Transitions in Water and Environmental Resources Management, 2004, pp. 1-10.
  • M. Pimentel, P. Costa, C. Félix, J. Figueiras, “Behavior of reinforced concrete box culverts under high embankments”, Journal of Structural Engineering, vol.135, no.4, pp.366-375, 2009.
  • R. M. Bennett, S. M. Wood, E. C. Drumm, N. R. Rainwater, “Vertical loads on concrete box culverts under high embankments”, Journal of Bridge Engineering, vol. 10, no. 6, pp. 643-649, 2005.
  • A. Abolmaali, A. K. Garg, “Effect of Wheel live load on Shear Behaviour of Precast Reinforced Cocrete Box Culverts.” Journal of Bridge Egineering, Vol. 13, No.1, January 1, 2008, @ ASCE, ISSN 1084-0702/200/1-93-99.
  • D. L. Petersen, “Recommended design specifications for live load distribution to buried structures”, Transportation Research Board, vol. 647, 2010.
  • T. A. Wood, W. D. Lawson, P. W., Jayawickrama, C. D. Newhouse, “Evaluation of production models for load rating reinforced concrete box culverts”, Journal of Bridge Engineering, vol. 20, no.1, 04014057, 2015.
  • W. D. Lawson, T. A. Wood, C. D. Newhouse, P. W. Jayawickrama, “Evaluating existing culverts for load capacity allowing for soil structure interaction”, Texas DOT, Austin, TX, 2010.
  • T. A. Wood, W. D. Lawson, P. W. Jayawickrama, “Newhouse, Evaluation of Production Models for Load Rating Reinforced Concrete Box Culverts”, The Journal of Bridge Engineering, pp.1-12, 2014.
  • N. Kolate, M. Mathew, S. Mali, “Analysisi and Design of RCC Box Culvert”, International Journal of Scientific & Engineering Research, 5(12), 2014.
  • W. F. Chen, J. Y. Liew, “The Civil Engineering Handbook”, Second Edition, National University of Singapore, CRC Press. 2003.
  • J. Boussinesq, “Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques: Principalement au calcul des deformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur und petite partie de leur surface ou de leur intérieur; memoire suivi de notes étendues sur divers points de physique mathématique et d'analyse”, Gauthier-Villars, 1885.
  • R. A. Cook, D. Bloomquist, “Report on Evaluation of Precast Box Culvert Systems: Part 2-Design Live Loads on Box Culverts”, Department of Civil Engineering, University of Florida, Project No. 4910 4504 857 12. 2002.
  • ASCE, “Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations (SIDD)”, (ASCE 15-98), American Society of Civil Engineers, Reston, Virginia. 2000.
  • E. Winkler, “Die Lehre Von Elasticitaet Und Festigkeit”. 1st Edn., H. Dominicus, Prague, 1867.
  • M. Hetenyi, “Beams on elastic foundation, Waverly press, Baltimore, 1946.
  • S. Lee, J. H. Ryu, I. S. Kim, “Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea”, Landslides, vol. 4, pp. 327-338. 2007.
  • S. Karimi, O. Kisi, J. Shiri, O. Makarynskyy, “Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia”, Computers and Geosciences, vol. 52, pp. 50-59, 2013.
  • Y. Erzin, Y. Tuskan, “Prediction of standard penetration test (SPT) value in Izmir, Turkey using radial basis neural network”, Celal Bayar University Journal of Science, vol.13, no.2, pp.433-439, 2017.
  • S. A. Yildizel, Y. Tuskan, G. Kaplan, “Prediction of skid resistance value of glass fiber-reinforced tiling materials”, Advances in Civil Engineering, 2017.
  • B. Y. Dagli, Y. Tuskan, D. Uncu, “Artifıcial Neural Networks For Hydraulic Systems”, Research and Revıews In Engineering–Summer, 2019, 85.
  • Y. Tuskan, B. Y. Dagli, D. Uncu, “The Use Of Artifıcial Neural Networks (Anns) In Geotechnics”, Research and Revıews In Engineering–Summer, 2019, 225.
  • Y. Erzin, Y. Tuskan, “Prediction of Standard Penetration Test (SPT) Value in Izmir, Turkey using General Regression Neural Network”, In International Conference on Agricultural, Civil and Environmental Engineering (ACEE-16) April 2016, pp. 18-19.
  • Y. Erzin, Y. Tuskan, “The use of neural networks for predicting the factor of safety of soil against liquefaction”, Scientia Iranica, vol.26, no.5, pp. 2615-2623, 2019.
  • H. Sonmez, C. Gokceoglu, H. A. Nefeslioglu, A. Kayabasi, “Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation”. International Journal of Rock Mechanics and Mining Sciences, vol. 43, no.2, pp.224-235, 2006.
  • N. Q. Hung, M. S. Babel, S. Weesakul, N. K. Tripathi, “An artificial neural network model for rainfall forecasting in Bangkok, Thailand”, Hydrology and Earth System Sciences, vol. 13, no.8, pp.1413-1425, 2009.
  • E. Ebrahimi, M. Monjezi, M. R. Khalesi, D. J. Armaghani, “Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm”, Bulletin of Engineering Geology and the Environment, vol. 75, pp. 27-36, 2016.
  • T. K. Gupta, K. Raza, “Optimization of ANN architecture: a review on nature-inspired techniques”. Machine learning in bio-signal analysis and diagnostic imaging, pp.159-182, 2019.
  • N. Singh, A. Singh, M. Tripathy, “Selection of hidden layer neurons and best training method for ffnn in application of long-term load forecasting”. Journal of electrical engineering, vol.63, no.3, pp.153-161, 2012.
  • M. A. Shahin, H. R. Maier, M. B. Jaksa, “Data division for developing neural networks applied to geotechnical engineering”. Journal of Computing in Civil Engineering, vol.18, no.2, pp.105-114, 2004.
There are 32 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Yesim Tuskan 0000-0001-7090-2235

Dilay Yıldırım Uncu 0000-0001-8660-2114

Early Pub Date October 23, 2024
Publication Date October 25, 2024
Submission Date April 11, 2023
Acceptance Date October 12, 2024
Published in Issue Year 2024

Cite

APA Tuskan, Y., & Yıldırım Uncu, D. (2024). Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network. Sakarya University Journal of Science, 28(5), 1103-1114. https://doi.org/10.16984/saufenbilder.1281213
AMA Tuskan Y, Yıldırım Uncu D. Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network. SAUJS. October 2024;28(5):1103-1114. doi:10.16984/saufenbilder.1281213
Chicago Tuskan, Yesim, and Dilay Yıldırım Uncu. “Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network”. Sakarya University Journal of Science 28, no. 5 (October 2024): 1103-14. https://doi.org/10.16984/saufenbilder.1281213.
EndNote Tuskan Y, Yıldırım Uncu D (October 1, 2024) Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network. Sakarya University Journal of Science 28 5 1103–1114.
IEEE Y. Tuskan and D. Yıldırım Uncu, “Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network”, SAUJS, vol. 28, no. 5, pp. 1103–1114, 2024, doi: 10.16984/saufenbilder.1281213.
ISNAD Tuskan, Yesim - Yıldırım Uncu, Dilay. “Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network”. Sakarya University Journal of Science 28/5 (October 2024), 1103-1114. https://doi.org/10.16984/saufenbilder.1281213.
JAMA Tuskan Y, Yıldırım Uncu D. Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network. SAUJS. 2024;28:1103–1114.
MLA Tuskan, Yesim and Dilay Yıldırım Uncu. “Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network”. Sakarya University Journal of Science, vol. 28, no. 5, 2024, pp. 1103-14, doi:10.16984/saufenbilder.1281213.
Vancouver Tuskan Y, Yıldırım Uncu D. Shear Capacity Prediction of Extremely-Loaded Box Culvert on Elastic Soil Using Artificial Neural Network. SAUJS. 2024;28(5):1103-14.