Research Article
BibTex RIS Cite

Investigation of Light Baryons in Hot QCD

Year 2024, , 155 - 166, 29.02.2024
https://doi.org/10.16984/saufenbilder.1288843

Abstract

We investigate the behavior of light baryons in hot QCD. To this aim, we evaluate the light baryons mass and residue in hot medium using the thermal correlation function with two-point by means of the thermal QCD sum rule. In sum rule calculations, we consider the additional thermal condensates appearing in Wilson expansion at T≠0. We determine the thermal continuum threshold using obtained sum rules expressions to analyze numerically. We observe that the masses and residues of light baryons stay approximately the same until the temperature reaches a certain value and then they fall with the temperature increase. We see that vacuum values of parameters in our calculations are in good consistency with other studies in the literature. Also, we define the fit functions that show how the spectroscopic parameters for light baryons behave at T≠0.

References

  • [1]M. A. Shifman, A. I. Vainstein, V. I. Zakharov, “QCD and resonance physics. Theoretical foundations,” Nuclear Physics B, vol. 147, pp. 385-447, 1979.
  • [2]M. A. Shifman, A. I. Vainstein, V. I. Zakharov, “QCD and resonance physics, applications,” Nuclear Physics B, vol. 147, pp. 448-518, 1979.
  • [3]A. I. Bochkarev, M. E. Shaposhnikov, “The spectrum of hot hadronic matter and finite-temperature QCD sum rules,” Nuclear Physics B, vol. 268, pp. 220-252, 1986.
  • [4]E. V. Shuryak, “Correlation functions in the QCD vacuum,” Reviews of Modern Physics, vol. 65, pp. 1-46, 1993.
  • [5]T. Hatsuda, Y. Koike, S. H. Lee, “Finite-temperature QCD sum rules reexamined: ρ,ω and A_1 mesons,” Nuclear Physics B, vol. 394, pp. 221-266, 1993.
  • [6]S. Mallik, S. Sarkar, “Vector and axial-vector mesons at finite temperature,” The European Physical Journal C-Particles and Fields, vol. 25, no. 3, pp. 445–452, 2002.
  • [7]K. Morita, S. H. Lee, “Mass Shift and Width Broadening of J/ψ in hot gluonic plasma from QCD Sum Rules,” Physical Review Letter, vol. 100, 022301, 2008.
  • [8]P. Gubler, K. Morita, M. Oka, “Charmonium spectra at finite temperature from QCD sum rules with the maximum entropy method,” Physical Review Letter, vol. 107, 092003, 2011.
  • [9]E. V. Veliev, H. Sundu, K. Azizi, M. Bayar, “Scalar quarkonia at finite temperature,” Physical Review D, vol. 82, 056012, 2010.
  • [10]K. Azizi, A. Türkan, E. Veli Veliev, H. Sundu, “Thermal properties of light tensor mesons via QCD sum rules,” Advances in High Energy Physics, vol. 2015 794243, 2015.
  • [11]E. V. Veliev, K. Azizi, H. Sundu, G. Kaya, “Thermal Properties of the Heavy Axial Vector Quarkonia,”Romanian Journal of Physics, vol. 59, pp. 140-154, 2014.
  • [12]E. Yazici, H. Sundu, E. V. Veliev, “BcBc J/ψ vertex form factor at finite temperature in the framework of QCD sum rules approach,” The European Physical Journal C, vol. 76, no. 2, 89, 2016.
  • [13]K. Azizi, H. Sundu, A. Türkan, E. Veli Veliev, “Thermal properties of D_2^* (2460) and D_s2^* (2573) tensor mesons using QCD sum rules,” Journal of Physics G: Nuclear and Particle Physics, vol. 41, 035003, 2015.
  • [14]E. Veli Veliev, G. Kaya, “Leptonic decay constants of and Mesons at finite temperature”, The European Physical Journal C, vol. 63, pp. 87-91, 2009.
  • [15]E. Veli Veliev, G. Kaya, “The mass and leptonic decay constant of meson in the framework of thermal QCD sum rules”, Acta Physica Polonica B, vol. 41, pp. 1905-1916, 2010.
  • [16]E. Veli Veliev, K. Azizi, H. Sundu, G. Kaya, A. Türkan, “Thermal QCD sum rules study of vector charmonium and bottomonium states”, The European Physical Journal A, vol. 47, 110, 2011
  • [17]K. Azizi, A. Türkan, H. Sundu, E. Veli Veliev, E. Yazıcı, “Thermal behaviors of light unflavored tensor mesons in the framework of QCD sum rule,” Journal of Physics: Conference Series, vol. 562, 012016, 2014.
  • [18]E Veli Veliev, S Günaydın, H Sundu, “Thermal properties of the exotic X(3872) state via QCD sum rule,” The European Physical Journal Plus, vol. 133, pp. 1-8, 2018.
  • [19]K. Azizi, B. Barsbay, H. Sundu, “Light scalar K_0^* (700) meson in vacuum and a hot medium,” Physical Review D, vol. 100, 094041, 2019.
  • [20]E. V. Veliev, K. Azizi, H. Sundu, N. Akşit, “Investigation of heavy-heavy pseudoscalar mesons in thermal QCD sum rules,”Journal of Physics G, vol. 39, no. 1, 015002, 2012.
  • [21]C. A. Dominguez, M. Loewe, J. C. Rojas, “Heavy-light quark pseudoscalar and vector mesons at finite temperature,” Journal of High Energy Physics, vol. 2007, no. 8, 040, 2007.
  • [22]Z. B. Wang, Z. G. Wang, “Analysis of the Heavy Pseudoscalar Mesons with thermal QCD sum rules,” International Journal of Theoretical Physics, vol. 55, pp. 3137–3146, 2016.
  • [23]C.A. Dominguez, M. S. Fetea, M. Loewe, “Pions at finite temperature from QCD sum rules,”Physics Letter B, vol. 387, no. 1, pp. 151-154, 1996.
  • [24]C. A. Dominguez, M. Loewe, Y. Zhang, “The a_1 (1260) meson and chiral symmetry restoration and deconfinment at finite temperature QCD,” Nuclear Physics B, vol. 234, pp. 305-308, 2013.
  • [25]C. A. Dominguez, M. Loewe, Y. Zhang, “Chiral symmetry restoration and deconfinement in QCD at finite temperature,” Physical Review D, vol. 90, pp. 039903, 2014.
  • [26]R. Gao, Z. H. Guo, J. Y. Pang, “Thermal behaviors of light scalar resonances at low temperatures,” Physical Review D, vol. 100, pp. 114028, 2019.
  • [27]E. Veli Veliev, T. M. Aliev, “Thermal QCD sum rules for σ(600) meson,” Journal of Physics G: Nuclear and Particle Physics, vol. 35, 125002, 2008.
  • [28]S. Mallik, S. Sarkar, “Thermal QCD sum rules for mesons,” Physical Review D, vol. 66, 056008, 2002.
  • [29]A. Türkan, H. Dağ, J. Y. Süngü, E. Veli Veliev, “Light D-wave axial-tensor K_2 (1820) meson at finite temperature,” Europhsics Letters, vol. 126, 51001, 2019.
  • [30]J. Y. Süngü, A. Türkan, E. Sertbakan, E. Veli Veliev, “Axial-tensor Meson family at T≠0,” The European Physical Journal C, vol. 80, 943, 2020.
  • [31]J. Y. Süngü, A. Türkan, H. Sundu, E. Veli Veliev, “Impact of a thermal medium on newly observed Z_cs (3985) resonance and its b-partner,” The European Physical Journal C, vol. 82, 453, 2022.
  • [32]H. Leutwyler, A. V. Smilga, “Nucleons at finite temperature,” Nuclear Physics B, vol. 342, pp. 302-316, 1990.
  • [33]C. Adami, I. Zahed, “Finite-temperature QCD sum rules for the nucleon,” Physical Review D, vol. 45, pp. 4312-4322, 1992.
  • [34]M. Kacir, I. Zahed, “Nucleons at Finite Temperature,” Physical Review D, vol. 54, pp. 5536-5544, 1996.
  • [35]S. Mallik, S. Sarkar, “Spectral representation and QCD sum rules for the nucleon at finite temperature,” Physical Review D, vol. 65, No. p. 016002, 2001.
  • [36]M. Abu-Shady, “Nucleon properties below the critical point temperature,” International Journal of Theoretical Physics, vol. 50, pp. 1372-1381, 2010.
  • [37]M. Abu-Shady, H. M. Mansour, “Quantized linear σ model at finite temperature, and nucleon properties,” Physical Review C, vol. 85, p. 055204, 2012.
  • [38]M. Abu-Shady, A. K. Abu-Nab, “Nucleon Properties at Finite Temperature in the Extended Quark-Sigma Model,” American Journal of Physics and Applications, vol. 2, pp. 46-51, 2014.
  • [39]C. Y. Ryu, C. H. Hyun, M.-K. Cheoun, “Magnetic moments of octet baryons at finite density and temperature,” Journal of Physics G: Nuclear and Particle Physics, vol. 37, pp. 105002, 2010.
  • [40]Y. Koike, “Octet Baryons at finite temperature: QCD sum rules vs. Chiral symmetry,” Physical Review D, vol. 48, pp. 2313, 1993.
  • [41]G. F. Burgio, H.-J. Schulze, A. Li, “Hyperon stars at finite temperature in the Brueckner theory,” Physical Review C, vol. 83, pp. 025804, 2011.
  • [42]A. Rios, A. Polls, A. Ramos, I. Vidana, “Bulk and single-particle properties of hyperonic matter at finite temperature,” Physical Review C, vol. 72, pp. 024316, 2005.
  • [43]P. F. Bedaque, “Chiral perturbation theory analysis of baryon temperature mass shifts,” Physics Letter B, vol. 387, pp. 1-8, 1996.
  • [44]J. M. Torres-Rincon, B. Sintes, J. Aichelin, “Flavor dependence of baryon melting temperature in effective models of QCD,” Physical Review C, vol. 91, pp. 065206, 2015.
  • [45]Y. Xu, Y. Liu, M. Huang, “The temperature dependence of the decuplet baryon masses from thermal QCD sum rules,” Communications in Theoretical Physics, vol. 63, pp. 209-214, 2015.
  • [46]S. Ghosh, S. Mitra, S. Sarkar, “Δ self-energy at finite temperature and density and the πN cross-section,” Physical Review D, vol. 95, pp. 056010, 2017.
  • [47]K. Azizi, G. Kaya, “Modifications on nucleon parameters at finite temperature,” The European Physical Journal Plus, vol. 130, pp. 172-183, 2015.
  • [48]K. Azizi, G. Kaya, “Thermal Behavior of the mass and residue of hyperons,” Journal of Physics G: Nuclear and Particle Physics, vol. 43, pp. 055002, 2016.
  • [49]K. Azizi, G. Bozkır, “Decuplet baryons in a hot medium,” European Physical Journal C, vol. 76, pp. 521-183, 2016.
  • [50]A. Ayala, A. Bashir, C. A. Dominguez, E. Gutierrez, M. Loewe, A. Raya, “QCD phase diagram from finite energy sum rules,” Physical Review D, vol. 84, pp. 056004, 2011.
  • [51]A. Bazavov, T. Bhattacharya, M. Cheng, N. H. Christ, C. DeTar, S. Ejiri, Steven Gottlieb, R. Gupta, U. M. Heller, K. Huebner, C. Jung, F. Karsch, E. Laermann, L. Levkova, C. Miao, R. D. Mawhinney, P. Petreczky, C. Schmidt, R. A. Soltz, W. Soeldner, R. Sugar, D. Toussaint, P. Vranas, “Equation of state and QCD transition at finite temperature,” Physical Review D, vol. 80, pp. 014504, 2009.
  • [52]M. Cheng, S. Ejiri, P. Hegde, F. Karsch, O. Kaczmarek, E. Laermann, R. D. Mawhinney, C. Miao, S. Mukherjee, P. Petreczky, C. Schmidt, W. Soeldner, “Equation of state for physical quark masses,” Physical Review D, vol. 81, pp. 054504, 2010.
  • [53]P. A Zyla, R. M. Barnett, J. Beringer, O. Dahl, D. A. Dwyer, D. E. Groom, C.-J. Lin, K. S. Lugovsky, E. Pianori, D. J. Robinson, C. G. Wohl, W. -M Yao, K. Agashe, G. Aielli, B. C. Allanach, C. Amsler, M. Antonelli, E. C. Aschenauer, D. M. Asner, H. Baer, Sw. Banerjee, L. Baudis, C. W. Bauer, J. J. Beatty, V. I. Belousov, S. Bethke, A. Bettini, O. Biebel, K. M. Black, E. Blucher, O. Buchmuller, V. Burkert, M. A. Bychkov, R. N. Cahn, M. Carena, A. Ceccucci, A. Cerri, D. Chakraborty, R. Sekhar Chivukula, G. Cowan, G. D'Ambrosio, T. Damour, D. de Florian, A. de Gouvêa, T. DeGrand, P. de Jong, G. Dissertori, B. A. Dobrescu, M. D'Onofrio, M. Doser, M. Drees, H. K. Dreiner, P. Eerola, U. Egede, S. Eidelman, J. Ellis, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, B. Foster, A. Freitas, H. Gallagher, L. Garren, H. -J. Gerber, G. Gerbier, T. Gershon, Y. Gershtein, T. Gherghetta, A. A. Godizov, M. C. Gonzalez-Garcia, M. Goodman, C. Grab, A. V. Gritsan, C. Grojean, M. Grünewald, A. Gurtu, T. Gutsche, H. E. Haber, C. Hanhart, S. Hashimoto, Y. Hayato, A. Hebecker, S. Heinemeyer, B. Heltsley, J. J. Hernández-Rey, K. Hikasa, J. Hisano, A. Höcker, J. Holder, A. Holtkamp, J. Huston, T. Hyodo, K. F. Johnson, M. Kado, M. Karliner, U. F. Katz, M. Kenzie, V. A. Khoze, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Y. Kwon, O. Lahav, J. Laiho, L. P. Lellouch, J. Lesgourgues, A. R. Liddle, Z. Ligeti, C. Lippmann, T. M. Liss, L. Littenberg, C. Lourengo, S. B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A. V. Manohar, W. J. Marciano, A. Masoni, J. Matthews, U.-G. Meißner, M. Mikhasenko, D. J. Miller, D. Milstead, R. E. Mitchell, K. Mönig, P. Molaro, F. Moortgat, M. Moskovic, K. Nakamura, M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K. A. Olive, C. Patrignani, J. A. Peacock, S. T. Petcov, V. A. Petrov, A. Pich, A. Piepke, A. Pomarol, S. Profumo, A. Quadt, K. Rabbertz, J. Rademacker, G. Raffelt, H. Ramani, M. Ramsey-Musolf, B. N. Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, G. Rybka, M. Ryskin, R. A. Ryutin, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, A. J. Schwartz, J. Schwiening, D. Scott, V. Sharma, S. R. Sharpe, T. Shutt, M. Silari, T. Sjöstrand, P. Skands, T. Skwarnicki, G. F. Smoot, A. Soffer, M. S. Sozzi, S. Spanier, C. Spiering, A. Stahl, S. L. Stone, Y. Sumino, T. Sumiyoshi, M. J. Syphers, F. Takahashi, M. Tanabashi, J. Tanaka, M. Taševský, K. Terashi, J. Terning, U. Thoma, R. S. Thorne, L. Tiator, M. Titov, N. P. Tkachenko, D. R. Tovey, K. Trabelsi, P. Urquijo, G. Valencia, R. Van de Water, N. Varelas, G. Venanzoni, L. Verde, M. G. Vincter, P. Vogel, W. Vogelsang, A. Vogt, V. Vorobyev, S. P. Wakely, W. Walkowiak, C. W. Walter, D. Wands, M. O .Wascko, D. H. Weinberg, E. J. Weinberg, M. White, L. R. Wiencke, S. Willocq, C. L. Woody, R. L. Workman, M. Yokoyama, R. Yoshida, G. Zanderighi, G. P. Zeller, O. V. Zenin, R.-Y. Zhu, S.-L. Zhu, F. Zimmermann, J. Anderson, T. Basaglia, V. S. Lugovsky, P. Schaffner, W. Zheng, “Review of Particle Physics,” Progress of Theoretical and Experimetal Physics, vol. 8, pp. 083C01, 2020.
  • [54]H. G. Dosch, M. Jamin, S. Narison, “Baryon masses and flavour symmetry breaking of chiral condensates,” Physics Letter B, vol. 220, pp. 251-257, 1989.
  • [55]B. L. Ioffe, “QCD at low Energies,” Progress in Particle and Nuclear Physics, vol. 56, pp. 232-277, 2006.
  • [56]V. M. Belyaev, B. L. Ioffe, “Determination of Baryon and Baryonic resonance masses from QCD sum rules 1. Nonstrange Baryons,” Soviet Physics Journal of Experimental and Theoretical Physics, vol. 56, pp. 493-501, 1982.
Year 2024, , 155 - 166, 29.02.2024
https://doi.org/10.16984/saufenbilder.1288843

Abstract

References

  • [1]M. A. Shifman, A. I. Vainstein, V. I. Zakharov, “QCD and resonance physics. Theoretical foundations,” Nuclear Physics B, vol. 147, pp. 385-447, 1979.
  • [2]M. A. Shifman, A. I. Vainstein, V. I. Zakharov, “QCD and resonance physics, applications,” Nuclear Physics B, vol. 147, pp. 448-518, 1979.
  • [3]A. I. Bochkarev, M. E. Shaposhnikov, “The spectrum of hot hadronic matter and finite-temperature QCD sum rules,” Nuclear Physics B, vol. 268, pp. 220-252, 1986.
  • [4]E. V. Shuryak, “Correlation functions in the QCD vacuum,” Reviews of Modern Physics, vol. 65, pp. 1-46, 1993.
  • [5]T. Hatsuda, Y. Koike, S. H. Lee, “Finite-temperature QCD sum rules reexamined: ρ,ω and A_1 mesons,” Nuclear Physics B, vol. 394, pp. 221-266, 1993.
  • [6]S. Mallik, S. Sarkar, “Vector and axial-vector mesons at finite temperature,” The European Physical Journal C-Particles and Fields, vol. 25, no. 3, pp. 445–452, 2002.
  • [7]K. Morita, S. H. Lee, “Mass Shift and Width Broadening of J/ψ in hot gluonic plasma from QCD Sum Rules,” Physical Review Letter, vol. 100, 022301, 2008.
  • [8]P. Gubler, K. Morita, M. Oka, “Charmonium spectra at finite temperature from QCD sum rules with the maximum entropy method,” Physical Review Letter, vol. 107, 092003, 2011.
  • [9]E. V. Veliev, H. Sundu, K. Azizi, M. Bayar, “Scalar quarkonia at finite temperature,” Physical Review D, vol. 82, 056012, 2010.
  • [10]K. Azizi, A. Türkan, E. Veli Veliev, H. Sundu, “Thermal properties of light tensor mesons via QCD sum rules,” Advances in High Energy Physics, vol. 2015 794243, 2015.
  • [11]E. V. Veliev, K. Azizi, H. Sundu, G. Kaya, “Thermal Properties of the Heavy Axial Vector Quarkonia,”Romanian Journal of Physics, vol. 59, pp. 140-154, 2014.
  • [12]E. Yazici, H. Sundu, E. V. Veliev, “BcBc J/ψ vertex form factor at finite temperature in the framework of QCD sum rules approach,” The European Physical Journal C, vol. 76, no. 2, 89, 2016.
  • [13]K. Azizi, H. Sundu, A. Türkan, E. Veli Veliev, “Thermal properties of D_2^* (2460) and D_s2^* (2573) tensor mesons using QCD sum rules,” Journal of Physics G: Nuclear and Particle Physics, vol. 41, 035003, 2015.
  • [14]E. Veli Veliev, G. Kaya, “Leptonic decay constants of and Mesons at finite temperature”, The European Physical Journal C, vol. 63, pp. 87-91, 2009.
  • [15]E. Veli Veliev, G. Kaya, “The mass and leptonic decay constant of meson in the framework of thermal QCD sum rules”, Acta Physica Polonica B, vol. 41, pp. 1905-1916, 2010.
  • [16]E. Veli Veliev, K. Azizi, H. Sundu, G. Kaya, A. Türkan, “Thermal QCD sum rules study of vector charmonium and bottomonium states”, The European Physical Journal A, vol. 47, 110, 2011
  • [17]K. Azizi, A. Türkan, H. Sundu, E. Veli Veliev, E. Yazıcı, “Thermal behaviors of light unflavored tensor mesons in the framework of QCD sum rule,” Journal of Physics: Conference Series, vol. 562, 012016, 2014.
  • [18]E Veli Veliev, S Günaydın, H Sundu, “Thermal properties of the exotic X(3872) state via QCD sum rule,” The European Physical Journal Plus, vol. 133, pp. 1-8, 2018.
  • [19]K. Azizi, B. Barsbay, H. Sundu, “Light scalar K_0^* (700) meson in vacuum and a hot medium,” Physical Review D, vol. 100, 094041, 2019.
  • [20]E. V. Veliev, K. Azizi, H. Sundu, N. Akşit, “Investigation of heavy-heavy pseudoscalar mesons in thermal QCD sum rules,”Journal of Physics G, vol. 39, no. 1, 015002, 2012.
  • [21]C. A. Dominguez, M. Loewe, J. C. Rojas, “Heavy-light quark pseudoscalar and vector mesons at finite temperature,” Journal of High Energy Physics, vol. 2007, no. 8, 040, 2007.
  • [22]Z. B. Wang, Z. G. Wang, “Analysis of the Heavy Pseudoscalar Mesons with thermal QCD sum rules,” International Journal of Theoretical Physics, vol. 55, pp. 3137–3146, 2016.
  • [23]C.A. Dominguez, M. S. Fetea, M. Loewe, “Pions at finite temperature from QCD sum rules,”Physics Letter B, vol. 387, no. 1, pp. 151-154, 1996.
  • [24]C. A. Dominguez, M. Loewe, Y. Zhang, “The a_1 (1260) meson and chiral symmetry restoration and deconfinment at finite temperature QCD,” Nuclear Physics B, vol. 234, pp. 305-308, 2013.
  • [25]C. A. Dominguez, M. Loewe, Y. Zhang, “Chiral symmetry restoration and deconfinement in QCD at finite temperature,” Physical Review D, vol. 90, pp. 039903, 2014.
  • [26]R. Gao, Z. H. Guo, J. Y. Pang, “Thermal behaviors of light scalar resonances at low temperatures,” Physical Review D, vol. 100, pp. 114028, 2019.
  • [27]E. Veli Veliev, T. M. Aliev, “Thermal QCD sum rules for σ(600) meson,” Journal of Physics G: Nuclear and Particle Physics, vol. 35, 125002, 2008.
  • [28]S. Mallik, S. Sarkar, “Thermal QCD sum rules for mesons,” Physical Review D, vol. 66, 056008, 2002.
  • [29]A. Türkan, H. Dağ, J. Y. Süngü, E. Veli Veliev, “Light D-wave axial-tensor K_2 (1820) meson at finite temperature,” Europhsics Letters, vol. 126, 51001, 2019.
  • [30]J. Y. Süngü, A. Türkan, E. Sertbakan, E. Veli Veliev, “Axial-tensor Meson family at T≠0,” The European Physical Journal C, vol. 80, 943, 2020.
  • [31]J. Y. Süngü, A. Türkan, H. Sundu, E. Veli Veliev, “Impact of a thermal medium on newly observed Z_cs (3985) resonance and its b-partner,” The European Physical Journal C, vol. 82, 453, 2022.
  • [32]H. Leutwyler, A. V. Smilga, “Nucleons at finite temperature,” Nuclear Physics B, vol. 342, pp. 302-316, 1990.
  • [33]C. Adami, I. Zahed, “Finite-temperature QCD sum rules for the nucleon,” Physical Review D, vol. 45, pp. 4312-4322, 1992.
  • [34]M. Kacir, I. Zahed, “Nucleons at Finite Temperature,” Physical Review D, vol. 54, pp. 5536-5544, 1996.
  • [35]S. Mallik, S. Sarkar, “Spectral representation and QCD sum rules for the nucleon at finite temperature,” Physical Review D, vol. 65, No. p. 016002, 2001.
  • [36]M. Abu-Shady, “Nucleon properties below the critical point temperature,” International Journal of Theoretical Physics, vol. 50, pp. 1372-1381, 2010.
  • [37]M. Abu-Shady, H. M. Mansour, “Quantized linear σ model at finite temperature, and nucleon properties,” Physical Review C, vol. 85, p. 055204, 2012.
  • [38]M. Abu-Shady, A. K. Abu-Nab, “Nucleon Properties at Finite Temperature in the Extended Quark-Sigma Model,” American Journal of Physics and Applications, vol. 2, pp. 46-51, 2014.
  • [39]C. Y. Ryu, C. H. Hyun, M.-K. Cheoun, “Magnetic moments of octet baryons at finite density and temperature,” Journal of Physics G: Nuclear and Particle Physics, vol. 37, pp. 105002, 2010.
  • [40]Y. Koike, “Octet Baryons at finite temperature: QCD sum rules vs. Chiral symmetry,” Physical Review D, vol. 48, pp. 2313, 1993.
  • [41]G. F. Burgio, H.-J. Schulze, A. Li, “Hyperon stars at finite temperature in the Brueckner theory,” Physical Review C, vol. 83, pp. 025804, 2011.
  • [42]A. Rios, A. Polls, A. Ramos, I. Vidana, “Bulk and single-particle properties of hyperonic matter at finite temperature,” Physical Review C, vol. 72, pp. 024316, 2005.
  • [43]P. F. Bedaque, “Chiral perturbation theory analysis of baryon temperature mass shifts,” Physics Letter B, vol. 387, pp. 1-8, 1996.
  • [44]J. M. Torres-Rincon, B. Sintes, J. Aichelin, “Flavor dependence of baryon melting temperature in effective models of QCD,” Physical Review C, vol. 91, pp. 065206, 2015.
  • [45]Y. Xu, Y. Liu, M. Huang, “The temperature dependence of the decuplet baryon masses from thermal QCD sum rules,” Communications in Theoretical Physics, vol. 63, pp. 209-214, 2015.
  • [46]S. Ghosh, S. Mitra, S. Sarkar, “Δ self-energy at finite temperature and density and the πN cross-section,” Physical Review D, vol. 95, pp. 056010, 2017.
  • [47]K. Azizi, G. Kaya, “Modifications on nucleon parameters at finite temperature,” The European Physical Journal Plus, vol. 130, pp. 172-183, 2015.
  • [48]K. Azizi, G. Kaya, “Thermal Behavior of the mass and residue of hyperons,” Journal of Physics G: Nuclear and Particle Physics, vol. 43, pp. 055002, 2016.
  • [49]K. Azizi, G. Bozkır, “Decuplet baryons in a hot medium,” European Physical Journal C, vol. 76, pp. 521-183, 2016.
  • [50]A. Ayala, A. Bashir, C. A. Dominguez, E. Gutierrez, M. Loewe, A. Raya, “QCD phase diagram from finite energy sum rules,” Physical Review D, vol. 84, pp. 056004, 2011.
  • [51]A. Bazavov, T. Bhattacharya, M. Cheng, N. H. Christ, C. DeTar, S. Ejiri, Steven Gottlieb, R. Gupta, U. M. Heller, K. Huebner, C. Jung, F. Karsch, E. Laermann, L. Levkova, C. Miao, R. D. Mawhinney, P. Petreczky, C. Schmidt, R. A. Soltz, W. Soeldner, R. Sugar, D. Toussaint, P. Vranas, “Equation of state and QCD transition at finite temperature,” Physical Review D, vol. 80, pp. 014504, 2009.
  • [52]M. Cheng, S. Ejiri, P. Hegde, F. Karsch, O. Kaczmarek, E. Laermann, R. D. Mawhinney, C. Miao, S. Mukherjee, P. Petreczky, C. Schmidt, W. Soeldner, “Equation of state for physical quark masses,” Physical Review D, vol. 81, pp. 054504, 2010.
  • [53]P. A Zyla, R. M. Barnett, J. Beringer, O. Dahl, D. A. Dwyer, D. E. Groom, C.-J. Lin, K. S. Lugovsky, E. Pianori, D. J. Robinson, C. G. Wohl, W. -M Yao, K. Agashe, G. Aielli, B. C. Allanach, C. Amsler, M. Antonelli, E. C. Aschenauer, D. M. Asner, H. Baer, Sw. Banerjee, L. Baudis, C. W. Bauer, J. J. Beatty, V. I. Belousov, S. Bethke, A. Bettini, O. Biebel, K. M. Black, E. Blucher, O. Buchmuller, V. Burkert, M. A. Bychkov, R. N. Cahn, M. Carena, A. Ceccucci, A. Cerri, D. Chakraborty, R. Sekhar Chivukula, G. Cowan, G. D'Ambrosio, T. Damour, D. de Florian, A. de Gouvêa, T. DeGrand, P. de Jong, G. Dissertori, B. A. Dobrescu, M. D'Onofrio, M. Doser, M. Drees, H. K. Dreiner, P. Eerola, U. Egede, S. Eidelman, J. Ellis, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, B. Foster, A. Freitas, H. Gallagher, L. Garren, H. -J. Gerber, G. Gerbier, T. Gershon, Y. Gershtein, T. Gherghetta, A. A. Godizov, M. C. Gonzalez-Garcia, M. Goodman, C. Grab, A. V. Gritsan, C. Grojean, M. Grünewald, A. Gurtu, T. Gutsche, H. E. Haber, C. Hanhart, S. Hashimoto, Y. Hayato, A. Hebecker, S. Heinemeyer, B. Heltsley, J. J. Hernández-Rey, K. Hikasa, J. Hisano, A. Höcker, J. Holder, A. Holtkamp, J. Huston, T. Hyodo, K. F. Johnson, M. Kado, M. Karliner, U. F. Katz, M. Kenzie, V. A. Khoze, S. R. Klein, E. Klempt, R. V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Y. Kwon, O. Lahav, J. Laiho, L. P. Lellouch, J. Lesgourgues, A. R. Liddle, Z. Ligeti, C. Lippmann, T. M. Liss, L. Littenberg, C. Lourengo, S. B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A. V. Manohar, W. J. Marciano, A. Masoni, J. Matthews, U.-G. Meißner, M. Mikhasenko, D. J. Miller, D. Milstead, R. E. Mitchell, K. Mönig, P. Molaro, F. Moortgat, M. Moskovic, K. Nakamura, M. Narain, P. Nason, S. Navas, M. Neubert, P. Nevski, Y. Nir, K. A. Olive, C. Patrignani, J. A. Peacock, S. T. Petcov, V. A. Petrov, A. Pich, A. Piepke, A. Pomarol, S. Profumo, A. Quadt, K. Rabbertz, J. Rademacker, G. Raffelt, H. Ramani, M. Ramsey-Musolf, B. N. Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, G. Rybka, M. Ryskin, R. A. Ryutin, Y. Sakai, G. P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, A. J. Schwartz, J. Schwiening, D. Scott, V. Sharma, S. R. Sharpe, T. Shutt, M. Silari, T. Sjöstrand, P. Skands, T. Skwarnicki, G. F. Smoot, A. Soffer, M. S. Sozzi, S. Spanier, C. Spiering, A. Stahl, S. L. Stone, Y. Sumino, T. Sumiyoshi, M. J. Syphers, F. Takahashi, M. Tanabashi, J. Tanaka, M. Taševský, K. Terashi, J. Terning, U. Thoma, R. S. Thorne, L. Tiator, M. Titov, N. P. Tkachenko, D. R. Tovey, K. Trabelsi, P. Urquijo, G. Valencia, R. Van de Water, N. Varelas, G. Venanzoni, L. Verde, M. G. Vincter, P. Vogel, W. Vogelsang, A. Vogt, V. Vorobyev, S. P. Wakely, W. Walkowiak, C. W. Walter, D. Wands, M. O .Wascko, D. H. Weinberg, E. J. Weinberg, M. White, L. R. Wiencke, S. Willocq, C. L. Woody, R. L. Workman, M. Yokoyama, R. Yoshida, G. Zanderighi, G. P. Zeller, O. V. Zenin, R.-Y. Zhu, S.-L. Zhu, F. Zimmermann, J. Anderson, T. Basaglia, V. S. Lugovsky, P. Schaffner, W. Zheng, “Review of Particle Physics,” Progress of Theoretical and Experimetal Physics, vol. 8, pp. 083C01, 2020.
  • [54]H. G. Dosch, M. Jamin, S. Narison, “Baryon masses and flavour symmetry breaking of chiral condensates,” Physics Letter B, vol. 220, pp. 251-257, 1989.
  • [55]B. L. Ioffe, “QCD at low Energies,” Progress in Particle and Nuclear Physics, vol. 56, pp. 232-277, 2006.
  • [56]V. M. Belyaev, B. L. Ioffe, “Determination of Baryon and Baryonic resonance masses from QCD sum rules 1. Nonstrange Baryons,” Soviet Physics Journal of Experimental and Theoretical Physics, vol. 56, pp. 493-501, 1982.
There are 56 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Gülşah Bozkır 0000-0002-3861-2016

Early Pub Date February 27, 2024
Publication Date February 29, 2024
Submission Date April 27, 2023
Acceptance Date October 23, 2023
Published in Issue Year 2024

Cite

APA Bozkır, G. (2024). Investigation of Light Baryons in Hot QCD. Sakarya University Journal of Science, 28(1), 155-166. https://doi.org/10.16984/saufenbilder.1288843
AMA Bozkır G. Investigation of Light Baryons in Hot QCD. SAUJS. February 2024;28(1):155-166. doi:10.16984/saufenbilder.1288843
Chicago Bozkır, Gülşah. “Investigation of Light Baryons in Hot QCD”. Sakarya University Journal of Science 28, no. 1 (February 2024): 155-66. https://doi.org/10.16984/saufenbilder.1288843.
EndNote Bozkır G (February 1, 2024) Investigation of Light Baryons in Hot QCD. Sakarya University Journal of Science 28 1 155–166.
IEEE G. Bozkır, “Investigation of Light Baryons in Hot QCD”, SAUJS, vol. 28, no. 1, pp. 155–166, 2024, doi: 10.16984/saufenbilder.1288843.
ISNAD Bozkır, Gülşah. “Investigation of Light Baryons in Hot QCD”. Sakarya University Journal of Science 28/1 (February 2024), 155-166. https://doi.org/10.16984/saufenbilder.1288843.
JAMA Bozkır G. Investigation of Light Baryons in Hot QCD. SAUJS. 2024;28:155–166.
MLA Bozkır, Gülşah. “Investigation of Light Baryons in Hot QCD”. Sakarya University Journal of Science, vol. 28, no. 1, 2024, pp. 155-66, doi:10.16984/saufenbilder.1288843.
Vancouver Bozkır G. Investigation of Light Baryons in Hot QCD. SAUJS. 2024;28(1):155-66.