Research Article
BibTex RIS Cite

Ameliorative Effect of a Vanadium-thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats

Year 2024, , 133 - 144, 29.02.2024
https://doi.org/10.16984/saufenbilder.1289079

Abstract

Recently, we have shown that oral administrations of an oxidovanadium (IV) complex, VOL, with tetradentate thiosemicarbazone ligand normalizes hyperglycemia of streptozotocin-induced diabetic rats (STZ-rats). For the development of vanadium compounds that exhibit insulin-like behavior, it is essential to know some of the pharmacokinetic properties of these complexes. The goal of the current research is to examine the healing effect of new sythesed VOL complex on the oxidative stress parameters of diabetic stomac tissue. Rats used in the experiments were divided as control, VOL+control, diabetic and diabetic+VOL. The rats were sacrificed after 12 days of the experimental period. The levels of glutathione, lipid peroxidation, non-enzymatic glycosylation, advanced oxidized protein products levels and the activities of some enzymes were measured in stomach tissue of all the experimental animals. Although VOL treatment to diabetic rats increased the stomach glutathione levels; lipid peroxidation, non-enzymatic glycosylation and advanced oxidized protein products levels were decreased. Also, the activities of catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase and carbonic anhydrase were increased in VOL treated diabetic group. Whereas, lactate dehydrogenase and xanthine oxidase activities were decreased. According to the obtained outcomes, it can be said that VOL treatment has a healing effect on the stomach tissue of diabetic rats. This effect provided by VOL is most likely due to the insulin-like and antioxidant activity of the complex. In conclusion, we can say that VOL may be a suitable candidate for diabetes treatment.

Project Number

yok

References

  • [1] W. Bielka, A. Przezak, A. Pawlik, “The Role of the gut microbiota in the pathogenesis of diabetes,” International Journal of Molecular Sciences, vol. 23, no. 1, pp. 480, 2022.
  • [2] A. Yarat, R. Yanardağ, S. Tunali, O. Sacan, F. Gursoy, N. Emekli, A. Ustuner, G. Ergenekon, “Effects of glibornuride versus metformin on eye lenses and skin in experimental diabetes,” Arzneimittel-Forschung, vol. 56, no.7, pp. 541–546, 2006.
  • [3] A. Bajpai, “Universal nerve conduction screening in type 1 diabetes-are we there yet?,” Indian Journal of Pediatrics, vol. 89, no. 3, pp. 216–217, 2022.
  • [4] B. B. Bayrak, P. Koroglu, O. Karabulut Bulan, R. Yanardag, “Metformin protects against diabetes-induced heart injury and dunning prostate cancer model,” Human & Experimental Toxicology, vol. 40, no.2, pp. 297–309, 2021.
  • [5] I. B. Turkyilmaz, B. B. Bayrak, O. Sacan, O. Mutlu, N. Akev, R. Yanardag, “Zinc supplementation restores altered biochemical parameters in stomach tissue of STZ diabetic rats,” Biological Trace Element Research, vol. 199, no. 6, pp. 2259–2265, 2021.
  • [6] H. Liu, V. S. Sridhar, J. Boulet, A. Dharia, A. Khan, P. R. Lawler, D. Z. I. Cherney, “Cardiorenal protection with SGLT2 inhibitors in patients with diabetes mellitus: from biomarkers to clinical outcomes in heart failure and diabetic kidney disease,” Metabolism: Clinical and Experimental, vol. 126, pp. 154918, 2022.
  • [7] C. O. de Sá-Ferreira, C. H. M. da Costa, J. C. W. Guimarães, N. S. Sampaio, L. M. L. Silva, L. P. de Mascarenhas, N. G. Rodrigues, T. L. Dos Santos, S. Campos, E. C. Young, “Diabetic ketoacidosis and COVID-19: what have we learned so far?,” American Journal of Physiology. Endocrinology and Metabolism, vol. 322, no. 1, pp. E44–E53, 2022.
  • [8] M. J. Concepción Zavaleta, J. G. Gonzáles Yovera, D. M. Moreno Marreros, L. D. P. Rafael Robles, K. R. Palomino Taype, K. N. Soto Gálvez, L. F. Arriola Torres, J. C. Coronado Arroyo, L. A. Concepción Urteaga, “Diabetic gastroenteropathy: An underdiagnosed complication,” World Journal of Diabetes, vol. 12, no.6, pp. 794–809, 2021.
  • [9] M. Bulc, S. Gonkowski, J. Całka, “Expression of cocaine and amphetamine regulated transcript (CART) in the porcine intramural neurons of stomach in the course of experimentally induced diabetes mellitus,” Journal of Molecular Neuroscience, vol. 57, no. 3, pp. 376–385, 2015.
  • [10] A. H. Kurniawan, B. H. Suwandi, U. Kholili, “Diabetic gastroenteropathy: a complication of diabetes mellitus,” Acta Medica Indonesiana, vol. 51, no. 3, pp. 263–271, 2019.
  • [11] H. Yaribeygi, T. Sathyapalan, S. L. Atkin, A. Sahebkar, “Molecular mechanisms linking oxidative stress and diabetes mellitus,” Oxidative Medicine and Cellular Longevity, vol. 2020, pp. 8609213, 2020.
  • [12] L. Xu, Z. Li, F. Guo, “Curcumin improves expression of ghrelin through attenuating oxidative stress in gastric tissues of streptozotocin-induced diabetic gastroparesis rats,” European Journal of Pharmacology, vol. 718, no. 1-3, pp. 219–225, 2013.
  • [13] D. C. Damasceno, A. O. Netto, I. L. Iessi, F. Q. Gallego, S. B. Corvino, B. Dallaqua, Y. K. Sinzato, A. Bueno, I. M. Calderon, M. V. Rudge, “Streptozotocin-induced diabetes models: pathophysiological mechanisms and fetal outcomes,” BioMed Research International, vol. 2014, pp. 819065, 2014.
  • [14] K. Trerattanavong, P. Tadi, 2021. “Glimepiride,” In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing; 2022.
  • [15] R. Correa, B. S. Quintanilla Rodriguez, T. M. Nappe, “Glipizide.” In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing; 2022.
  • [16] M. D. Hardin, T. F. Jacobs, “Glyburide,” In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.
  • [17] P. Koroglu Aydın, O. Karabulut-Bulan, I. Bugan, I. B. Turkyilmaz, S. Altun, R. Yanardag, “The protective effect of metformin against testicular damage in diabetes and prostate cancer model,” Cell Biochemistry and Function, vol. 40, no. 1, pp. 60–70, 2022.
  • [18] C. F. Deacon, H. E. Lebovitz, “Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas,” Diabetes, Obesity & Metabolism, vol. 18, no. 4, pp. 333–347, 2016.
  • [19] D. Tripathi, V. Mani, R. P. Pal, “Vanadium in biosphere and its role in biological processes,” Biological Trace Element Research, vol. 186, no. 1, pp. 52–67, 2018.
  • [20] S. Bolkent, S. Bolkent, R. Yanardag, S. Tunali, “Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats,” Diabetes Research and Clinical Practice, vol. 70, no. 2, pp. 103–109, 2005.
  • [21] R. Yanardag, T. B. Demirci, B. Ulküseven, S. Bolkent, S. Tunali, S. Bolkent, 2009. “Synthesis, characterization and antidiabetic properties of N (1)-2,4-dihydroxybenzylidene-N (4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium (IV),” European Journal of Medicinal Chemistry, vol. 44, no. 2, pp. 818–826, 2009.
  • [22] S. Semiz, “Vanadium as potential therapeutic agent for COVID-19: A focus on its antiviral, antiinflamatory, and antihyperglycemic effects,” Journal of Trace Elements in Medicine and Biology, vol. 69, pp, 126887, 2022.
  • [23] T. Bal, B. Atasever, Z. Solakoğlu, S. Erdem-Kuruca, B. Ülküseven, “Synthesis, characterisation and cytotoxic properties of the N1, N4-diarylidene-S-methyl-thiosemicarbazone chelates with Fe (III) and Ni (II),” European Journal of Medicinal Chemistry, vol. 42, no. 2, pp. 161-167, 2007.
  • [24] B. Atasever, B. Ülküseven, T. Bal-Demirci, S. Erdem-Kuruca, Z. Solakoğlu, “Cytotoxic activities of new iron (III) and nickel (II) chelates of some S-methyl-thiosemicarbazones on K562 and ECV304 cells,” Investigational New Drugs, vol. 28, no. 4, pp. 421-432, 2010.
  • [25] T. Demirci, Y. Köseoğlu, S. Güner, B. Ülküseven, “Oxovanadium (IV) complexes of bromo-and methoxy substituted N1, N4-diarylidene-S-methylthiosemicarbazones,” Open Chemistry, vol. 4, no. 1, pp. 149-159, 2006.
  • [26] M. Melchior, S. J. Rettig, B. D. Liboiron, K. H. Thompson, V. G. Yuen, J. H. McNeill, C. Orvig, “Insulin-enhancing vanadium (III) complexes,” Inorganic Chemistry, vol. 40, no. 18, pp. 4686–4690, 2001.
  • [27] A. Junod, A. E. Lambert, W. Stauffacher, A. E. Renold, “Diabetogenic action of streptozotocin: relationship of dose to metabolic response,” The Journal of Clinical Investigation, vol. 48, no. 11, pp. 2129–2139, 1969.
  • [28] E. Beutler, “In a manual of biochemical methods”, 2nd ed. Grune and Stratton, New York, 1975, pp. 112-114.
  • [29] A. Ledwozyw, J. Michalak, A. Stepień, A. Kadziołka, “The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis,” Clinica Chimica Acta; International Journal of Clinical Chemistry, vol. 155, no. 3, pp. 275–283, 1986.
  • [30] V. Witko-Sarsat, M. Friedlander, C. Capeillère-Blandin, T. Nguyen-Khoa, A. T. Nguyen, J. Zingraff, P, Jungers, B. Descamps-Latscha, “Advanced oxidation protein products as a novel marker of oxidative stress in uremia,” Kidney International, vol. 49, no. 5, pp. 1304–1313, 1996.
  • [31] K. M. Parker, J. D. England, J. Da Costa, R. L. Hess, D. E. Goldstein, “Improved colorimetric assay for glycosylated hemoglobin,” Clinical Chemistry, vol. 27, no. 5, pp. 669–672, 1981.
  • [32] O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
  • [33] H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121-126, 1984.
  • [34] A. A. Mylroie, H. Collins, C. Umbles, J. Kyle, “Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate,” Toxicology and Applied Pharmacology, vol. 82, no. 3, pp. 512–520, 1986.
  • [35] D. E. Paglia, W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1; pp. 158–169, 1967.
  • [36] A. Wendel, “Glutathione peroxidase,” Methods in Enzymology, vol. 77, pp. 325-333, 1981.
  • [37] E. Beutler, Red cell metabolism: A manual of biochemical methods, London: Grune & Stratton, 1971.
  • [38] W. H. Habig, W. B. Jakoby, “Assays for differentiation of glutathione S-transferases,” Methods in Enzymology, vol. 77, pp. 398–405, 1981.
  • [39] J. A. Verpoorte, S. Mehta, J. T. Edsall, “Esterase activities of human carbonic anhydrases B and C,” The Journal of Biological Chemistry, vol. 242, no. 18, pp. 4221–4229, 1967.
  • [40] F. Wroblewski, “Clinical significance of serum enzyme alterations associated with myocardial infarction,” American Heart Journal, vol. 54, no. 2, pp 219–224, 1957.
  • [41] E. D. Corte, F. Stirpe, “Regulation of xanthine oxidase in rat liver: modifications of the enzyme activity of rat liver supernatant on storage at 20 degrees,” The Biochemical Journal, vol. 108, no. 2, pp. 349–351, 1968.
  • [42] A. C. Maritim, R. A. Sanders, J. B. Watkins 3rd, “Diabetes, oxidative stress, and antioxidants: a review,” Journal of Biochemical and Molecular Toxicology, vol. 17, no. 1, pp. 24–38, 2003.
  • [43] I. G. Fantus, G. Deragon, R. Lai, S. Tang, S. “Modulation of insulin action by vanadate: evidence of a role for phosphotyrosine phosphatase activity to alter cellular signaling,” Molecular and Cellular Biochemistry, vol. 153, no. 1-2, pp. 103–112, 1995.
  • [44] J. E. Sprietsma, G. E. Schuitemaker, “Diabetes can be prevented by reducing insulin production,” Medical Hypotheses, vol. 42, no. 1, pp. 15–23, 1994.
  • [45] I. G. Fantus, E. Tsiani, “Multifunctional actions of vanadium compounds on insulin signaling pathways: evidence for preferential enhancement of metabolic versus mitogenic effects,” Molecular and Cellular Biochemistry, vol. 182, no. 1-2, pp. 109–119, 1998.
  • [46] Z. Gao, C. Zhang, S. Yu, X. Yang, K. Wang, K. “Vanadyl bisacetylacetonate protects β cells from palmitate-induced cell death through the unfolded protein response pathway,” Journal of Biological Inorganic Chemistry, vol. 16, no. 5, pp. 789-798, 2011.
  • [47] M. Hadjzadeh, V. Alikhani, S. Hosseinian, B. Zarei, Z. Keshavarzi, “The effect of melatonin against gastric oxidative stress and dyslipidemia in streptozotocin-induced diabetic rats,” Acta Endocrinologica, vol. 14, no. 4, pp. 453–458, 2018.
  • [48] S. Tunali, R. Yanardag, “Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats,” Pharmacological Research, vol. 53, no. 3, pp. 271–277, 2006.
  • [49] F. Heidari, S. Rabizadeh, A. Rajab, F. Heidari, M. Mouodi, H. Mirmiranpour, A. Esteghamati, M. Nakhjavani, “Advanced glycation end-products and advanced oxidation protein products levels are correlates of duration of type 2 diabetes,” Life Sciences, vol. 260, pp. 118422, 2020.
  • [50] A. Piwowar, M. Knapik-Kordecka, M. Warwas, “Comparison of the usefulness of plasma levels of oxidatively modified forms of albumin in estimating kidney dysfunction in diabetic patients,” Clinical and Investigative Medicine, vol. 3, no 2, pp. E109İ, 2010.
  • [51] V. Jakuš, E. Sándorová, J. Kalninová, B. Krahulec, “Monitoring of glycation, oxidative stress and inflammation in relation to the occurrence of vascular complications in patients with type 2 diabetes mellitus,” Physiological Research, vol. 63, no. 3, pp. 297–309, 2014.
  • [52] K. A. Adeshara, A. G. Diwan, T. R. Jagtap, K. Advani, A. Siddiqui, R. S. Tupe, “Relationship between plasma glycation with membrane modification, oxidative stress and expression of glucose trasporter-1 in type 2 diabetes patients with vascular complications,” Journal of Diabetes and Its Complications, vol. 31, no. 2, pp. 439–448, 2017.
  • [53] S. K. Jaiswal, C. V. Rao, B. Sharma, P. Mishra, S. Das, M. K. Dubey, “Gastroprotective effect of standardized leaf extract from Argyreia speciosa on experimental gastric ulcers in rats,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 341–344, 2011.
  • [54] A. A. Hosni, A. A. Abdel-Moneim, E. S. Abdel-Reheim, S. M. Mohamed, H. Helmy, “Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ, proinflammatory cytokines and oxidative stress,” Biomedicine & Pharmacotherapy, vol. 88, pp. 52-60, 2017.
  • [55] T. Anwer, Z. A. Alkarbi, A. Hassan Najmi, S. Alshahrani, R. Siddiqui, G. Khan, M. Firoz Alam, “Modulatory effect of zingerone against STZ-nicotinamide induced type-2 diabetes mellitus in rats,” Archives of Physiology and Biochemistry, vol. 127, no. 4, pp. 304–310, 2021.
  • [56] N. Kılınç, M. M. İşgör. B. Şengül, Ş. Beydemir, “Influence of pesticide exposure on carbonic anhydrase II from sheep stomach,” Toxicology and Industrial Health, vol. 31, no. 9, pp. 823–830, 2015.
  • [57] M. Speeckaert, W. Van Biesen, J. Delanghe, R. Slingerland, A. Wiecek, J. Heaf, C. Drechsler, R. Lacatus, R. Vanholder, I. Nistor, “European renal best practice guideline development group on diabetes in advanced CKD. Are there better alternatives than haemoglobin A1c to estimate glycaemic control in the chronic kidney disease population?” Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association- European Renal Association, vol. 29, no. 12, pp. 2167–2177, 2014.
  • [58] M. Adeva-Andany, M. López-Ojén, R. Funcasta-Calderón, E. Ameneiros-Rodríguez, C. Donapetry-García, M. Vila-Altesor, J. Rodríguez-Seijas, “Comprehensive review on lactate metabolism in human health,” Mitochondrion, vol.17, pp. 76-100, 2014.
  • [59] T. E. Omolekulo, O. S. Michael, L. A. Olatunji, “Dipeptidyl peptidase-4 inhibition protects the liver of insulin-resistant female rats against triglyceride accumulation by suppressing uric acid,” Biomedicine & Pharmacotherapy, vol. 110, pp. 869-877, 2019.
Year 2024, , 133 - 144, 29.02.2024
https://doi.org/10.16984/saufenbilder.1289079

Abstract

Supporting Institution

yok

Project Number

yok

Thanks

yok

References

  • [1] W. Bielka, A. Przezak, A. Pawlik, “The Role of the gut microbiota in the pathogenesis of diabetes,” International Journal of Molecular Sciences, vol. 23, no. 1, pp. 480, 2022.
  • [2] A. Yarat, R. Yanardağ, S. Tunali, O. Sacan, F. Gursoy, N. Emekli, A. Ustuner, G. Ergenekon, “Effects of glibornuride versus metformin on eye lenses and skin in experimental diabetes,” Arzneimittel-Forschung, vol. 56, no.7, pp. 541–546, 2006.
  • [3] A. Bajpai, “Universal nerve conduction screening in type 1 diabetes-are we there yet?,” Indian Journal of Pediatrics, vol. 89, no. 3, pp. 216–217, 2022.
  • [4] B. B. Bayrak, P. Koroglu, O. Karabulut Bulan, R. Yanardag, “Metformin protects against diabetes-induced heart injury and dunning prostate cancer model,” Human & Experimental Toxicology, vol. 40, no.2, pp. 297–309, 2021.
  • [5] I. B. Turkyilmaz, B. B. Bayrak, O. Sacan, O. Mutlu, N. Akev, R. Yanardag, “Zinc supplementation restores altered biochemical parameters in stomach tissue of STZ diabetic rats,” Biological Trace Element Research, vol. 199, no. 6, pp. 2259–2265, 2021.
  • [6] H. Liu, V. S. Sridhar, J. Boulet, A. Dharia, A. Khan, P. R. Lawler, D. Z. I. Cherney, “Cardiorenal protection with SGLT2 inhibitors in patients with diabetes mellitus: from biomarkers to clinical outcomes in heart failure and diabetic kidney disease,” Metabolism: Clinical and Experimental, vol. 126, pp. 154918, 2022.
  • [7] C. O. de Sá-Ferreira, C. H. M. da Costa, J. C. W. Guimarães, N. S. Sampaio, L. M. L. Silva, L. P. de Mascarenhas, N. G. Rodrigues, T. L. Dos Santos, S. Campos, E. C. Young, “Diabetic ketoacidosis and COVID-19: what have we learned so far?,” American Journal of Physiology. Endocrinology and Metabolism, vol. 322, no. 1, pp. E44–E53, 2022.
  • [8] M. J. Concepción Zavaleta, J. G. Gonzáles Yovera, D. M. Moreno Marreros, L. D. P. Rafael Robles, K. R. Palomino Taype, K. N. Soto Gálvez, L. F. Arriola Torres, J. C. Coronado Arroyo, L. A. Concepción Urteaga, “Diabetic gastroenteropathy: An underdiagnosed complication,” World Journal of Diabetes, vol. 12, no.6, pp. 794–809, 2021.
  • [9] M. Bulc, S. Gonkowski, J. Całka, “Expression of cocaine and amphetamine regulated transcript (CART) in the porcine intramural neurons of stomach in the course of experimentally induced diabetes mellitus,” Journal of Molecular Neuroscience, vol. 57, no. 3, pp. 376–385, 2015.
  • [10] A. H. Kurniawan, B. H. Suwandi, U. Kholili, “Diabetic gastroenteropathy: a complication of diabetes mellitus,” Acta Medica Indonesiana, vol. 51, no. 3, pp. 263–271, 2019.
  • [11] H. Yaribeygi, T. Sathyapalan, S. L. Atkin, A. Sahebkar, “Molecular mechanisms linking oxidative stress and diabetes mellitus,” Oxidative Medicine and Cellular Longevity, vol. 2020, pp. 8609213, 2020.
  • [12] L. Xu, Z. Li, F. Guo, “Curcumin improves expression of ghrelin through attenuating oxidative stress in gastric tissues of streptozotocin-induced diabetic gastroparesis rats,” European Journal of Pharmacology, vol. 718, no. 1-3, pp. 219–225, 2013.
  • [13] D. C. Damasceno, A. O. Netto, I. L. Iessi, F. Q. Gallego, S. B. Corvino, B. Dallaqua, Y. K. Sinzato, A. Bueno, I. M. Calderon, M. V. Rudge, “Streptozotocin-induced diabetes models: pathophysiological mechanisms and fetal outcomes,” BioMed Research International, vol. 2014, pp. 819065, 2014.
  • [14] K. Trerattanavong, P. Tadi, 2021. “Glimepiride,” In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing; 2022.
  • [15] R. Correa, B. S. Quintanilla Rodriguez, T. M. Nappe, “Glipizide.” In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing; 2022.
  • [16] M. D. Hardin, T. F. Jacobs, “Glyburide,” In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.
  • [17] P. Koroglu Aydın, O. Karabulut-Bulan, I. Bugan, I. B. Turkyilmaz, S. Altun, R. Yanardag, “The protective effect of metformin against testicular damage in diabetes and prostate cancer model,” Cell Biochemistry and Function, vol. 40, no. 1, pp. 60–70, 2022.
  • [18] C. F. Deacon, H. E. Lebovitz, “Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas,” Diabetes, Obesity & Metabolism, vol. 18, no. 4, pp. 333–347, 2016.
  • [19] D. Tripathi, V. Mani, R. P. Pal, “Vanadium in biosphere and its role in biological processes,” Biological Trace Element Research, vol. 186, no. 1, pp. 52–67, 2018.
  • [20] S. Bolkent, S. Bolkent, R. Yanardag, S. Tunali, “Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats,” Diabetes Research and Clinical Practice, vol. 70, no. 2, pp. 103–109, 2005.
  • [21] R. Yanardag, T. B. Demirci, B. Ulküseven, S. Bolkent, S. Tunali, S. Bolkent, 2009. “Synthesis, characterization and antidiabetic properties of N (1)-2,4-dihydroxybenzylidene-N (4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium (IV),” European Journal of Medicinal Chemistry, vol. 44, no. 2, pp. 818–826, 2009.
  • [22] S. Semiz, “Vanadium as potential therapeutic agent for COVID-19: A focus on its antiviral, antiinflamatory, and antihyperglycemic effects,” Journal of Trace Elements in Medicine and Biology, vol. 69, pp, 126887, 2022.
  • [23] T. Bal, B. Atasever, Z. Solakoğlu, S. Erdem-Kuruca, B. Ülküseven, “Synthesis, characterisation and cytotoxic properties of the N1, N4-diarylidene-S-methyl-thiosemicarbazone chelates with Fe (III) and Ni (II),” European Journal of Medicinal Chemistry, vol. 42, no. 2, pp. 161-167, 2007.
  • [24] B. Atasever, B. Ülküseven, T. Bal-Demirci, S. Erdem-Kuruca, Z. Solakoğlu, “Cytotoxic activities of new iron (III) and nickel (II) chelates of some S-methyl-thiosemicarbazones on K562 and ECV304 cells,” Investigational New Drugs, vol. 28, no. 4, pp. 421-432, 2010.
  • [25] T. Demirci, Y. Köseoğlu, S. Güner, B. Ülküseven, “Oxovanadium (IV) complexes of bromo-and methoxy substituted N1, N4-diarylidene-S-methylthiosemicarbazones,” Open Chemistry, vol. 4, no. 1, pp. 149-159, 2006.
  • [26] M. Melchior, S. J. Rettig, B. D. Liboiron, K. H. Thompson, V. G. Yuen, J. H. McNeill, C. Orvig, “Insulin-enhancing vanadium (III) complexes,” Inorganic Chemistry, vol. 40, no. 18, pp. 4686–4690, 2001.
  • [27] A. Junod, A. E. Lambert, W. Stauffacher, A. E. Renold, “Diabetogenic action of streptozotocin: relationship of dose to metabolic response,” The Journal of Clinical Investigation, vol. 48, no. 11, pp. 2129–2139, 1969.
  • [28] E. Beutler, “In a manual of biochemical methods”, 2nd ed. Grune and Stratton, New York, 1975, pp. 112-114.
  • [29] A. Ledwozyw, J. Michalak, A. Stepień, A. Kadziołka, “The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis,” Clinica Chimica Acta; International Journal of Clinical Chemistry, vol. 155, no. 3, pp. 275–283, 1986.
  • [30] V. Witko-Sarsat, M. Friedlander, C. Capeillère-Blandin, T. Nguyen-Khoa, A. T. Nguyen, J. Zingraff, P, Jungers, B. Descamps-Latscha, “Advanced oxidation protein products as a novel marker of oxidative stress in uremia,” Kidney International, vol. 49, no. 5, pp. 1304–1313, 1996.
  • [31] K. M. Parker, J. D. England, J. Da Costa, R. L. Hess, D. E. Goldstein, “Improved colorimetric assay for glycosylated hemoglobin,” Clinical Chemistry, vol. 27, no. 5, pp. 669–672, 1981.
  • [32] O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
  • [33] H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121-126, 1984.
  • [34] A. A. Mylroie, H. Collins, C. Umbles, J. Kyle, “Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate,” Toxicology and Applied Pharmacology, vol. 82, no. 3, pp. 512–520, 1986.
  • [35] D. E. Paglia, W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1; pp. 158–169, 1967.
  • [36] A. Wendel, “Glutathione peroxidase,” Methods in Enzymology, vol. 77, pp. 325-333, 1981.
  • [37] E. Beutler, Red cell metabolism: A manual of biochemical methods, London: Grune & Stratton, 1971.
  • [38] W. H. Habig, W. B. Jakoby, “Assays for differentiation of glutathione S-transferases,” Methods in Enzymology, vol. 77, pp. 398–405, 1981.
  • [39] J. A. Verpoorte, S. Mehta, J. T. Edsall, “Esterase activities of human carbonic anhydrases B and C,” The Journal of Biological Chemistry, vol. 242, no. 18, pp. 4221–4229, 1967.
  • [40] F. Wroblewski, “Clinical significance of serum enzyme alterations associated with myocardial infarction,” American Heart Journal, vol. 54, no. 2, pp 219–224, 1957.
  • [41] E. D. Corte, F. Stirpe, “Regulation of xanthine oxidase in rat liver: modifications of the enzyme activity of rat liver supernatant on storage at 20 degrees,” The Biochemical Journal, vol. 108, no. 2, pp. 349–351, 1968.
  • [42] A. C. Maritim, R. A. Sanders, J. B. Watkins 3rd, “Diabetes, oxidative stress, and antioxidants: a review,” Journal of Biochemical and Molecular Toxicology, vol. 17, no. 1, pp. 24–38, 2003.
  • [43] I. G. Fantus, G. Deragon, R. Lai, S. Tang, S. “Modulation of insulin action by vanadate: evidence of a role for phosphotyrosine phosphatase activity to alter cellular signaling,” Molecular and Cellular Biochemistry, vol. 153, no. 1-2, pp. 103–112, 1995.
  • [44] J. E. Sprietsma, G. E. Schuitemaker, “Diabetes can be prevented by reducing insulin production,” Medical Hypotheses, vol. 42, no. 1, pp. 15–23, 1994.
  • [45] I. G. Fantus, E. Tsiani, “Multifunctional actions of vanadium compounds on insulin signaling pathways: evidence for preferential enhancement of metabolic versus mitogenic effects,” Molecular and Cellular Biochemistry, vol. 182, no. 1-2, pp. 109–119, 1998.
  • [46] Z. Gao, C. Zhang, S. Yu, X. Yang, K. Wang, K. “Vanadyl bisacetylacetonate protects β cells from palmitate-induced cell death through the unfolded protein response pathway,” Journal of Biological Inorganic Chemistry, vol. 16, no. 5, pp. 789-798, 2011.
  • [47] M. Hadjzadeh, V. Alikhani, S. Hosseinian, B. Zarei, Z. Keshavarzi, “The effect of melatonin against gastric oxidative stress and dyslipidemia in streptozotocin-induced diabetic rats,” Acta Endocrinologica, vol. 14, no. 4, pp. 453–458, 2018.
  • [48] S. Tunali, R. Yanardag, “Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats,” Pharmacological Research, vol. 53, no. 3, pp. 271–277, 2006.
  • [49] F. Heidari, S. Rabizadeh, A. Rajab, F. Heidari, M. Mouodi, H. Mirmiranpour, A. Esteghamati, M. Nakhjavani, “Advanced glycation end-products and advanced oxidation protein products levels are correlates of duration of type 2 diabetes,” Life Sciences, vol. 260, pp. 118422, 2020.
  • [50] A. Piwowar, M. Knapik-Kordecka, M. Warwas, “Comparison of the usefulness of plasma levels of oxidatively modified forms of albumin in estimating kidney dysfunction in diabetic patients,” Clinical and Investigative Medicine, vol. 3, no 2, pp. E109İ, 2010.
  • [51] V. Jakuš, E. Sándorová, J. Kalninová, B. Krahulec, “Monitoring of glycation, oxidative stress and inflammation in relation to the occurrence of vascular complications in patients with type 2 diabetes mellitus,” Physiological Research, vol. 63, no. 3, pp. 297–309, 2014.
  • [52] K. A. Adeshara, A. G. Diwan, T. R. Jagtap, K. Advani, A. Siddiqui, R. S. Tupe, “Relationship between plasma glycation with membrane modification, oxidative stress and expression of glucose trasporter-1 in type 2 diabetes patients with vascular complications,” Journal of Diabetes and Its Complications, vol. 31, no. 2, pp. 439–448, 2017.
  • [53] S. K. Jaiswal, C. V. Rao, B. Sharma, P. Mishra, S. Das, M. K. Dubey, “Gastroprotective effect of standardized leaf extract from Argyreia speciosa on experimental gastric ulcers in rats,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 341–344, 2011.
  • [54] A. A. Hosni, A. A. Abdel-Moneim, E. S. Abdel-Reheim, S. M. Mohamed, H. Helmy, “Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ, proinflammatory cytokines and oxidative stress,” Biomedicine & Pharmacotherapy, vol. 88, pp. 52-60, 2017.
  • [55] T. Anwer, Z. A. Alkarbi, A. Hassan Najmi, S. Alshahrani, R. Siddiqui, G. Khan, M. Firoz Alam, “Modulatory effect of zingerone against STZ-nicotinamide induced type-2 diabetes mellitus in rats,” Archives of Physiology and Biochemistry, vol. 127, no. 4, pp. 304–310, 2021.
  • [56] N. Kılınç, M. M. İşgör. B. Şengül, Ş. Beydemir, “Influence of pesticide exposure on carbonic anhydrase II from sheep stomach,” Toxicology and Industrial Health, vol. 31, no. 9, pp. 823–830, 2015.
  • [57] M. Speeckaert, W. Van Biesen, J. Delanghe, R. Slingerland, A. Wiecek, J. Heaf, C. Drechsler, R. Lacatus, R. Vanholder, I. Nistor, “European renal best practice guideline development group on diabetes in advanced CKD. Are there better alternatives than haemoglobin A1c to estimate glycaemic control in the chronic kidney disease population?” Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association- European Renal Association, vol. 29, no. 12, pp. 2167–2177, 2014.
  • [58] M. Adeva-Andany, M. López-Ojén, R. Funcasta-Calderón, E. Ameneiros-Rodríguez, C. Donapetry-García, M. Vila-Altesor, J. Rodríguez-Seijas, “Comprehensive review on lactate metabolism in human health,” Mitochondrion, vol.17, pp. 76-100, 2014.
  • [59] T. E. Omolekulo, O. S. Michael, L. A. Olatunji, “Dipeptidyl peptidase-4 inhibition protects the liver of insulin-resistant female rats against triglyceride accumulation by suppressing uric acid,” Biomedicine & Pharmacotherapy, vol. 110, pp. 869-877, 2019.
There are 59 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Fatma Gülnaz Karakuş 0000-0003-2086-2444

Sevim Tunalı 0000-0003-3363-1290

Tülay Bal-demirci 0000-0003-4663-2209

Bahri Ülküseven 0000-0001-6342-1505

Refiye Yanardağ 0000-0003-4185-4363

Project Number yok
Early Pub Date February 27, 2024
Publication Date February 29, 2024
Submission Date April 28, 2023
Acceptance Date October 21, 2023
Published in Issue Year 2024

Cite

APA Karakuş, F. G., Tunalı, S., Bal-demirci, T., Ülküseven, B., et al. (2024). Ameliorative Effect of a Vanadium-thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats. Sakarya University Journal of Science, 28(1), 133-144. https://doi.org/10.16984/saufenbilder.1289079
AMA Karakuş FG, Tunalı S, Bal-demirci T, Ülküseven B, Yanardağ R. Ameliorative Effect of a Vanadium-thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats. SAUJS. February 2024;28(1):133-144. doi:10.16984/saufenbilder.1289079
Chicago Karakuş, Fatma Gülnaz, Sevim Tunalı, Tülay Bal-demirci, Bahri Ülküseven, and Refiye Yanardağ. “Ameliorative Effect of a Vanadium-Thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats”. Sakarya University Journal of Science 28, no. 1 (February 2024): 133-44. https://doi.org/10.16984/saufenbilder.1289079.
EndNote Karakuş FG, Tunalı S, Bal-demirci T, Ülküseven B, Yanardağ R (February 1, 2024) Ameliorative Effect of a Vanadium-thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats. Sakarya University Journal of Science 28 1 133–144.
IEEE F. G. Karakuş, S. Tunalı, T. Bal-demirci, B. Ülküseven, and R. Yanardağ, “Ameliorative Effect of a Vanadium-thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats”, SAUJS, vol. 28, no. 1, pp. 133–144, 2024, doi: 10.16984/saufenbilder.1289079.
ISNAD Karakuş, Fatma Gülnaz et al. “Ameliorative Effect of a Vanadium-Thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats”. Sakarya University Journal of Science 28/1 (February 2024), 133-144. https://doi.org/10.16984/saufenbilder.1289079.
JAMA Karakuş FG, Tunalı S, Bal-demirci T, Ülküseven B, Yanardağ R. Ameliorative Effect of a Vanadium-thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats. SAUJS. 2024;28:133–144.
MLA Karakuş, Fatma Gülnaz et al. “Ameliorative Effect of a Vanadium-Thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats”. Sakarya University Journal of Science, vol. 28, no. 1, 2024, pp. 133-44, doi:10.16984/saufenbilder.1289079.
Vancouver Karakuş FG, Tunalı S, Bal-demirci T, Ülküseven B, Yanardağ R. Ameliorative Effect of a Vanadium-thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats. SAUJS. 2024;28(1):133-44.