Research Article
BibTex RIS Cite

The Effect of Peptizing Agent Concentration on Processing and Properties of Alumina Based Catalyst Support

Year 2024, , 304 - 313, 30.04.2024
https://doi.org/10.16984/saufenbilder.1323558

Abstract

Gamma alumina (γ-Al2O3) has drawn attention as a support material for heterogeneous catalysts extensively used in the oil and gas industry due to its superior properties. Boehmite (AlOOH) is an industrially accepted and well-known precursor to produce gamma alumina-based support. The process additions such as nitric acid (HNO3) are commonly used in shaping process of alumina to control textural, mechanical and structural properties of final catalyst support. In this work, gamma alumina precursor boehmite was peptized by nitric acid at molar ratio of HNO3/AlOOH ranging from 0 to 0.054. With addition of nitric acid, extrusion paste showed higher plasticity up to 0.017 mole of HNO3/AlOOH. The addition of more than this point led to an inhomogenity of extrusion paste caused by hard and brittle structure caused by the formation of aluminum nitrate salts. Also, higher mechanical strength was observed for samples peptized with lower nitric acid concentration because of effective deagglomeration by peptization. The pore size of catalyst support pellets increased up to an acid/ boehmite molar ratio of 0.017 by peptizing of boehmite. However, beyond this point pore size decreased due to dissolution of boehmite.

Project Number

119C161- 2244 industrial Ph.D. program

References

  • [1] A. Glotov, E. Karakhanov, “Heterogeneous Catalysts for Petrochemical Synthesis and Oil Refining,” Catalysts, vol. 11, no. 5, pp.602, 2021.
  • [2] E. Vitz. (2022, Dec. 11). Heterogeneous Catalysis [Online]. Available: 18.12: Heterogeneous Catalysis- Chemistry LibreTexts
  • [3] Y. Pan, X. Shen, L. Yao, A. Bentalib, Z. Peng, “Active sites in heterogeneous catalytic reaction on metal and metal oxide: theory and practice,” Catalysts, vol. 8, no. 10, pp. 78, 2018.
  • [4] A. Hagemeyer, A.F. Volpe, Encyclopedia of Condensed Matter Physics. Academic Press, 2005.
  • [5] K. Y. Paranjpe, “Alpha, Beta and Gamma alumina as catalyst,” Pharma Innov, vol. 6, no. 11, pp. 236-238, 2017.
  • [6] P. Alphonse, M. Courty, “Structure and thermal behavior of nanocrystalline boehmite,” Thermochimica acta, vol. 425, no. 1-2, pp. 75-89, 2005.
  • [7] C. Kozicki, C. Carlson. (2022, Dec. 11). Why Agglomerate Powder? [Online]. Available: Why Agglomerate Powder? (feeco.com)
  • [8] M. Al-Ani, M. Al-Dahhan, “Effect of catalyst shape on pressure drop and liquid holdup in a pilot plant trickle bed reactor,” Fuel, vol. 284, pp. 118860, 2021.
  • [9] K. P. de Jong, Synthesis of solid catalysts. John Wiley & Sons, 2009.
  • [10] S. Devyatkov, N. V. Kuzichkin, D. Murzin, “On comprehensive understanding of catalyst shaping by Extrusion,” Chemistry Today, vol. 33, no. 6, pp. 57-64, 2015
  • [11] J. A. Schwarz, C. I. Contescu, Surfaces of nanoparticles and porous materials. CRC press, 1999.
  • [12] M. Dronova, “Study of concentrated boehmite suspensions containing anisotropic colloidal particles: phase diagram, structure and rheology-Application to membrane separation processes,” Ph.D. dissertation, Sorbonne Université, 2021.
  • [13] N. van Garderen, F. J. Clemens, C. G. Aneziris, T. Graule, “Improved γ-alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application,” Ceramics International, vol. 38, no. 7, pp. 5481-5492, 2012.
  • [14] G. T. Whiting, S. Chung, D. Stosic, A. D. Chowdhury, L. van der Wal, D. Fu, J. Zecevic, A. Travert, K. Houben, M. Baldus, B. M. Weckhuysen, “Multiscale mechanistic insights of shaped catalyst body formulations and their impact on catalytic properties,” ACS Catalysis, vol. 9, no. 6, pp. 4792-4803, 2019.
  • [15] W. C. Cheng, R. G. Donnelly, “Surfactants in acid-peptized catalyst compositions,” U.S. Patent 4705767, November 10 1987.
  • [16] K. W. Jun, Y. J. Lee, S. M. Kim, J. Y. Kim, “Method of preparing boehmite and gamma-alumina with high surface area,” U. S. 11886367, September 5 2012.
  • [17] F. Karouia, M. Boualleg, M. Digne, P. Alphonse, “The impact of nanocrystallite size and shape on phase transformation: Application to the boehmite/alumina transformation,” Advanced Powder Technology, vol. 27, no. 4, pp. 1814-1820, 2016.
  • [18] S. Lowell, J. E. Shields, Powder Surface Area and Porosity: Second Edition. Chapman and Hall, 1984.
  • [19] J. M. Drouin, T. Chopin, P. Nortier, H. Van Damme, “Rheology and structure of peptized boehmite pastes,” Journal of colloid and interface science, vol. 125, no. 1, pp. 314-326, 1988.
  • [20] Sasol. (2022, Dec. 11). High Purity Aluminas [Online]. Available: https://products.sasol.com/pic/products/home/categories/high-purity-aluminas/index.html
  • [21] S. Lamouri, M. Hamidouche, N. Bouaouadja, H. Belhouchet, V. Garnier, G. Fantozzi, J. F. Trelkat, “Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification,” Boletín de la Sociedad Española de cerámica y vidrio, vol. 56, no. 2, pp. 47-54, 2017.
  • [22] K. Wefers, C. Misra, “Oxides and hydroxides of aluminum,” Alcoa Technical Paper, no. 19, 1987.
  • [23] L. Sharifi, M. Beyhaghi, T. Ebadzadeh, E. Ghasemi, “Microwave-assisted sol–gel synthesis of alpha alumina nanopowder and study of the rheological behavior,” Ceramics International, vol. 39, no. 2, pp. 1227-1232, 2013.
  • [24] Y. V. Vatutina, K. A. Nadeina, O. V. Klimov, M. O. Kazakov, I. G. Danilova, S. V. Cherepanova, A. S. Noskov, “Peptization of alumina by ammonia to adjust catalytic properties of NiMo/B-Al2O3 hydrotreating catalysts,” Catalysis Today, no. 375, pp. 377-392, 2021.
  • [25] V. Y. Tregubenko, I. E. Udras, V. A. Drozdov, A. S. Belyi, “Effect of pseudoboehmite peptization by organic acids on texture characteristics of obtained aluminum oxides,” Russian journal of applied chemistry, vol. 84, pp. 9-16, 2011.
Year 2024, , 304 - 313, 30.04.2024
https://doi.org/10.16984/saufenbilder.1323558

Abstract

Supporting Institution

TÜBİTAK

Project Number

119C161- 2244 industrial Ph.D. program

References

  • [1] A. Glotov, E. Karakhanov, “Heterogeneous Catalysts for Petrochemical Synthesis and Oil Refining,” Catalysts, vol. 11, no. 5, pp.602, 2021.
  • [2] E. Vitz. (2022, Dec. 11). Heterogeneous Catalysis [Online]. Available: 18.12: Heterogeneous Catalysis- Chemistry LibreTexts
  • [3] Y. Pan, X. Shen, L. Yao, A. Bentalib, Z. Peng, “Active sites in heterogeneous catalytic reaction on metal and metal oxide: theory and practice,” Catalysts, vol. 8, no. 10, pp. 78, 2018.
  • [4] A. Hagemeyer, A.F. Volpe, Encyclopedia of Condensed Matter Physics. Academic Press, 2005.
  • [5] K. Y. Paranjpe, “Alpha, Beta and Gamma alumina as catalyst,” Pharma Innov, vol. 6, no. 11, pp. 236-238, 2017.
  • [6] P. Alphonse, M. Courty, “Structure and thermal behavior of nanocrystalline boehmite,” Thermochimica acta, vol. 425, no. 1-2, pp. 75-89, 2005.
  • [7] C. Kozicki, C. Carlson. (2022, Dec. 11). Why Agglomerate Powder? [Online]. Available: Why Agglomerate Powder? (feeco.com)
  • [8] M. Al-Ani, M. Al-Dahhan, “Effect of catalyst shape on pressure drop and liquid holdup in a pilot plant trickle bed reactor,” Fuel, vol. 284, pp. 118860, 2021.
  • [9] K. P. de Jong, Synthesis of solid catalysts. John Wiley & Sons, 2009.
  • [10] S. Devyatkov, N. V. Kuzichkin, D. Murzin, “On comprehensive understanding of catalyst shaping by Extrusion,” Chemistry Today, vol. 33, no. 6, pp. 57-64, 2015
  • [11] J. A. Schwarz, C. I. Contescu, Surfaces of nanoparticles and porous materials. CRC press, 1999.
  • [12] M. Dronova, “Study of concentrated boehmite suspensions containing anisotropic colloidal particles: phase diagram, structure and rheology-Application to membrane separation processes,” Ph.D. dissertation, Sorbonne Université, 2021.
  • [13] N. van Garderen, F. J. Clemens, C. G. Aneziris, T. Graule, “Improved γ-alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application,” Ceramics International, vol. 38, no. 7, pp. 5481-5492, 2012.
  • [14] G. T. Whiting, S. Chung, D. Stosic, A. D. Chowdhury, L. van der Wal, D. Fu, J. Zecevic, A. Travert, K. Houben, M. Baldus, B. M. Weckhuysen, “Multiscale mechanistic insights of shaped catalyst body formulations and their impact on catalytic properties,” ACS Catalysis, vol. 9, no. 6, pp. 4792-4803, 2019.
  • [15] W. C. Cheng, R. G. Donnelly, “Surfactants in acid-peptized catalyst compositions,” U.S. Patent 4705767, November 10 1987.
  • [16] K. W. Jun, Y. J. Lee, S. M. Kim, J. Y. Kim, “Method of preparing boehmite and gamma-alumina with high surface area,” U. S. 11886367, September 5 2012.
  • [17] F. Karouia, M. Boualleg, M. Digne, P. Alphonse, “The impact of nanocrystallite size and shape on phase transformation: Application to the boehmite/alumina transformation,” Advanced Powder Technology, vol. 27, no. 4, pp. 1814-1820, 2016.
  • [18] S. Lowell, J. E. Shields, Powder Surface Area and Porosity: Second Edition. Chapman and Hall, 1984.
  • [19] J. M. Drouin, T. Chopin, P. Nortier, H. Van Damme, “Rheology and structure of peptized boehmite pastes,” Journal of colloid and interface science, vol. 125, no. 1, pp. 314-326, 1988.
  • [20] Sasol. (2022, Dec. 11). High Purity Aluminas [Online]. Available: https://products.sasol.com/pic/products/home/categories/high-purity-aluminas/index.html
  • [21] S. Lamouri, M. Hamidouche, N. Bouaouadja, H. Belhouchet, V. Garnier, G. Fantozzi, J. F. Trelkat, “Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification,” Boletín de la Sociedad Española de cerámica y vidrio, vol. 56, no. 2, pp. 47-54, 2017.
  • [22] K. Wefers, C. Misra, “Oxides and hydroxides of aluminum,” Alcoa Technical Paper, no. 19, 1987.
  • [23] L. Sharifi, M. Beyhaghi, T. Ebadzadeh, E. Ghasemi, “Microwave-assisted sol–gel synthesis of alpha alumina nanopowder and study of the rheological behavior,” Ceramics International, vol. 39, no. 2, pp. 1227-1232, 2013.
  • [24] Y. V. Vatutina, K. A. Nadeina, O. V. Klimov, M. O. Kazakov, I. G. Danilova, S. V. Cherepanova, A. S. Noskov, “Peptization of alumina by ammonia to adjust catalytic properties of NiMo/B-Al2O3 hydrotreating catalysts,” Catalysis Today, no. 375, pp. 377-392, 2021.
  • [25] V. Y. Tregubenko, I. E. Udras, V. A. Drozdov, A. S. Belyi, “Effect of pseudoboehmite peptization by organic acids on texture characteristics of obtained aluminum oxides,” Russian journal of applied chemistry, vol. 84, pp. 9-16, 2011.
There are 25 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Servet Turan 0000-0002-7322-3091

Irmak Su Ökten 0000-0003-3720-5328

Cem Aciksari 0000-0002-1371-2272

Serdar Çelebi 0000-0003-0993-9762

Umut Savacı 0000-0002-5801-9666

Erhan Ayas 0000-0003-0592-3990

Project Number 119C161- 2244 industrial Ph.D. program
Early Pub Date April 22, 2024
Publication Date April 30, 2024
Submission Date July 6, 2023
Acceptance Date December 23, 2023
Published in Issue Year 2024

Cite

APA Turan, S., Ökten, I. S., Aciksari, C., Çelebi, S., et al. (2024). The Effect of Peptizing Agent Concentration on Processing and Properties of Alumina Based Catalyst Support. Sakarya University Journal of Science, 28(2), 304-313. https://doi.org/10.16984/saufenbilder.1323558
AMA Turan S, Ökten IS, Aciksari C, Çelebi S, Savacı U, Ayas E. The Effect of Peptizing Agent Concentration on Processing and Properties of Alumina Based Catalyst Support. SAUJS. April 2024;28(2):304-313. doi:10.16984/saufenbilder.1323558
Chicago Turan, Servet, Irmak Su Ökten, Cem Aciksari, Serdar Çelebi, Umut Savacı, and Erhan Ayas. “The Effect of Peptizing Agent Concentration on Processing and Properties of Alumina Based Catalyst Support”. Sakarya University Journal of Science 28, no. 2 (April 2024): 304-13. https://doi.org/10.16984/saufenbilder.1323558.
EndNote Turan S, Ökten IS, Aciksari C, Çelebi S, Savacı U, Ayas E (April 1, 2024) The Effect of Peptizing Agent Concentration on Processing and Properties of Alumina Based Catalyst Support. Sakarya University Journal of Science 28 2 304–313.
IEEE S. Turan, I. S. Ökten, C. Aciksari, S. Çelebi, U. Savacı, and E. Ayas, “The Effect of Peptizing Agent Concentration on Processing and Properties of Alumina Based Catalyst Support”, SAUJS, vol. 28, no. 2, pp. 304–313, 2024, doi: 10.16984/saufenbilder.1323558.
ISNAD Turan, Servet et al. “The Effect of Peptizing Agent Concentration on Processing and Properties of Alumina Based Catalyst Support”. Sakarya University Journal of Science 28/2 (April 2024), 304-313. https://doi.org/10.16984/saufenbilder.1323558.
JAMA Turan S, Ökten IS, Aciksari C, Çelebi S, Savacı U, Ayas E. The Effect of Peptizing Agent Concentration on Processing and Properties of Alumina Based Catalyst Support. SAUJS. 2024;28:304–313.
MLA Turan, Servet et al. “The Effect of Peptizing Agent Concentration on Processing and Properties of Alumina Based Catalyst Support”. Sakarya University Journal of Science, vol. 28, no. 2, 2024, pp. 304-13, doi:10.16984/saufenbilder.1323558.
Vancouver Turan S, Ökten IS, Aciksari C, Çelebi S, Savacı U, Ayas E. The Effect of Peptizing Agent Concentration on Processing and Properties of Alumina Based Catalyst Support. SAUJS. 2024;28(2):304-13.