Research Article
BibTex RIS Cite

Effect of Adhesion and Corrosion Performance of Geomet Basecoat (321)- Topcoat (ML Black) Applications on Cataphoretic Coating

Year 2024, , 220 - 236, 29.02.2024
https://doi.org/10.16984/saufenbilder.1345904

Abstract

This study aimed to improve corrosion resistance and adhesion of metallic materials typically used in automotive application. A combination of cataphoretic and Geomet coatings has been used to improve corrosion resistance. Firstly, cataphoretic coating was applied and then the coating process was completed with Geomet 321 and ML Black respectively. The results of the corrosion tests were classified into different categories such as adhesion, water resistance, moisture resistance, salt resistance and cyclic tests. The corrosion properties of the two- and three-layer coatings were found to improve as a function of both the sandblast pre-treatment and the post-cataphoresis curing temperature. The findings show that the adhesion strength and corrosion properties of Geomet 321 increases with curing temperature and sandblasting. This study will be a contribution to the future of protective coatings in the automotive industry by describing the process steps necessary to achieve optimum results.

References

  • [1] G. Koch, “Cost of corrosion,” Trends in oil and gas corrosion research and technologies: Production and transmission, Elsevier Inc., A. M. El-Sherik, 2017, pp. 3–30.
  • [2] J. Kinugasa, F. Yuse, M. Tsunezawa, M. Nakaya, “Effect of corrosion resistance and rust characterization for hydrogen absorption into steel under an atmospheric corrosion condition,” ISIJ International, vol. 56, pp. 459–464, 2016.
  • [3] H. Li, Y. He, P. Luo, Y. Fan, H. Yu, Y. Wang, T. He, Z. Li, H. Zhang, “Influence of pulse frequency on Corrosion Resistance and Mechanical Properties of Ni-W/B4C Composite Coatings,” Colloids Surface A Physicochemical Engineering Asp, vol. 629, 127406, 2021.
  • [4] A. Karadag, E. Duru, M. Uysal, H. Akbulut, “Tribological performance of Ni-W/PTFE composite coating,” vol. 26, no. 4A, pp. 2885–2893, 2022.
  • [5] H. Gül, M. Uysal, H. Akbulut, A. Alp, “Effect of PC electrodeposition on the structure and tribological behavior of Ni-Al2O3 nanocomposite coatings,” Surface Coating Technology, vol. 258, pp. 1202–1211, 2014.
  • [6] Y. Yang, L. Qu, L. Dai, T. S. Kang, M. Durstock, “Electrophoresis coating of titanium dioxide on aligned carbon canotubes for controlled syntheses of photoelectronic nanomaterials,” Advanced Materials, vol. 19, no. 9, pp. 1239–1243, 2007.
  • [7] S. M. A. Shibli, B. N. Meena, R. Remya, “A review on recent approaches in the field of hot dip Zinc Galvanizing process,” Surface Coating Technology, vol. 262, pp. 210–215, 2015.
  • [8] A. R. Marder, “The metallurgy of Zinc-Coated steel,” Progress in Materials Science, vol. 45, no. 3, pp. 191–271, 2000.
  • [9] H. Cheng Yu, B. Zhen Chen, X. Shi, X. Sun, B. Li, “Investigation of the Trivalent-Chrome Coating on 6063 Aluminum Alloy,” Materials Letters, vol. 62, no. 17–18, pp. 2828–2831, 2008.
  • [10] P. K. Sinha, R. Feser, “Phosphate coating on steel surfaces by an electrochemical method,” Surface Coating Technology, vol. 161, no. 2–3, pp. 158–168, 2002.
  • [11] H. Gul, İ. Usta, “Effect of Alumina Concentration on morphology, wear, and corrosion: Electroless Ni-W-P/Al2O3 composite coatings on aluminum surfaces,” Journal of Materials Engineering and Performance, vol. 32, no. 13, pp. 6107–6122, 2023.
  • [12] A. López-Ortega, R. Bayón, J. L. Arana, “Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater,” Surface Coating Technology, vol. 349, pp. 1083–1097, 2018.
  • [13] J. R. Lince, “Effective application of solid lubricants in spacecraft mechanisms,” Lubricants, vol. 8, p. 74, 2020.
  • [14] H. C. Barshilia, “Surface modification technologies for aerospace and engineering applications: Current trends, challenges and future prospects,” Transactions of the Indian National Academy of Engineering, vol. 6, no. 2, pp. 173–188, 2021.
  • [15] W. Skotnicki, D. Jędrzejczyk, “The Comparative analysis of the coatings deposited on the automotive parts by the cataphoresis method,” Materials, vol. 14, no. 20, p. 6155, 2021.
  • [16] M. Doerre, L. Hibbitts, G. Patrick, N. K. Akafuah, “Advances in automotive conversion coatings during pretreatment of the Body Structure: A Review,” Coatings, vol. 8, no. 11, p. 405, 2018.
  • [17] N. Sorour, W. Zhang, E. Ghali, G. Houlachi, “A review of organic additives in Zinc Electrodeposition process” Hydrometallurgy, vol. 171, pp. 320–332, 2017.
  • [18] “Home | ZINC. International Zinc Association. (2023, Jul. 17). Zinc essential for modern life [Online]. Available: https://www.zinc.org/
  • [19] N. Rawal. (2023). The Characteristics, Toxicity and Effects of Cadmium [Online]. Available: https://www.researchgate.net/publication/305778858
  • [20] R. Ding, S. Chen, J. Lv, W. Zhang, X. Zhao, J. Liu, X. Wang, T. Gui, B. Li, Y. Tang, W. Li, “Study on graphene modified organic anti-corrosion coatings: A comprehensive review,” Journal of Alloys and Compounds, vol. 806, pp. 611–635, 2019.
  • [21] B. Philip (2011). Evaluation of Corrosion in Crevices in Screw Joints Mats Thörnqvist [Online]. Available: https://www.diva-portal.org/smash/get/diva2:441388/FULLTEXT01.pdf
  • [22] D. Zhmurkin, “Corrosion Resistance of Bolt Coatings Technical Paper,” Tyco Electronics Harrisburg, PA, pp. 1-7, 2009.
  • [23] Benseler. (2023). New Dip-Spin System for Zinc Flake Coatings on Rack Parts All-Over Coating [Online]. Available: https://www.benseler.de/en/verfahren/beschichtung/geomet.php
  • [24] “Geomet Coating. (2023). Keys & Clamps.” [Online]. Available: https://www.keytechno.com/service/geomet-coating/
  • [25] K. Westphal, “An optimized coating system for fasteners with metric threads,” ATZ Worldwide, vol. 107, no. 5, pp. 8–10, 2005.
  • [26] R. B. Egêa, A. Primolini, B. I. Da Maia, “Development of friction coefficient controller for E-coat (KTL),” SAE Technical, 2018-36-0200, 2018.
  • [27] B. Oleksiak, K. Kołtało, R. Poloczek, “Application methods and selected properties of Zinc Flake coatings,” Metalurgija, vol. 60, pp. 162–164, 2021.
  • [28] M. R. Isa, O. S. Zaroog, M. A. Yunus, V. R. Sanny Bavu, N. Rosmi, “Effect of sandblasting process on mechanical properties of ASTM A516 Grade 70 Steel,” Key Engineering Materials, vol. 765, pp. 222–226, 2018.
  • [29] A. Rudawska, I. Danczak, M. Müller, and P. Valasek, “The effect of sandblasting on surface properties for adhesion,” International Journal of Adhesion and Adhesives, vol. 70, pp. 176–190, 2016.
  • [30] B. Herbáth, K. Kovács, M. Jakab, É. Makó, “Crystal structure and properties of Zinc Phosphate Layers on aluminium and steel alloy surfaces,” Crystals, vol. 13, p. 369, 2023.
  • [31] L. Kwiatkowski, “Phosphate coatings porosity: Review of new approaches,” Surface Engineering, vol. 20, no. 4, pp. 292–298, 2013.
  • [32] M. Kilinç, L. Akyalcın, “Kataforez kaplamalı çelik yüzeylere uygulanan dubleks kaplamanın korozyon dayanım performansı üzerindeki etkisinin incelenmesi,” Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, vol. 30, pp. 68–78, 2022.
  • [33] A. Ş. Yargıç, B. Eren, N. Özbay, “Enhancement of coating features by supporting Zinc-Based coating with cataphoresis process: Effect of acidity and coating thickness on the coating Quality,” Journal of Polytechnic, pp. 1, 2023.
  • [34] Yellow Powder Coating (2023). PPG Powder Coating Colors | PPG Powder Coatings [Online]. Available: https://powdercoatings.ppg.com/products/pctz39104-yellow
  • [35] S. J. García, J. Suay, “A comparative study between the results of different electrochemical techniques (EIS and AC/DC/AC) application to the optimisation of the cataphoretic and curing parameters of a primer for the automotive industry,” Progress in Organic Coatings vol.59, pp. 251–258, 2007.
  • [36] S. J. García, M. T. Rodríguez, R. Izquierdo, J. Suay, “Evaluation of cure temperature effects in cataphoretic automotive primers by electrochemical techniques,” Progress in Organic Coatings, vol.60, no.4, pp. 303–311, 2007.
  • [37] “Cross Hatch Method. (2023). [Online]. Available: https://www.elcometer.com/en/cross-hatch-method
  • [38] “Adhesion tests (2023). [Online]. Available: https://www.substech.com/dokuwiki/doku.php?id=adhesion_tests
  • [39] “ASTM D 870: 2002 Standard (2023). Practice for testing water resistance.” [Online]. Available: https://infostore.saiglobal.com/en-us/standards/astm-d870-02-151549_SAIG_ASTM_ASTM_357357/
  • [40] “MIL-STD-810 Test Method 507 Humidity-Crystal group.” (2023). [Online]. Available: https://www.crystalrugged.com/mil-std-810-test-method-507-humidity/
  • [41] DIN EN ISO 9227 – (2023) European Standards. [Online]. Available: https://www.en-standard.eu/din-en-iso-9227-corrosion-tests-in-artificial-atmospheres-salt-spray-tests-iso-9227-2022/
  • [42] SIST EN ISO 9227:2006 – (2023) Corrosion Tests in Artificial Atmospheres - Salt Spray Tests [Online]. Available: https://standards.iteh.ai/catalog/standards/sist/6e82d425-e4fd-4579-a86d-d94eddd1cb36/sist-en-iso-9227-2006
  • [43] B. Chatterjee, (2017) “Science and industry of processes for Zinc-based coatings with improved properties,” Jahrbuch Oberfl ächentechnik Band, pp 1-30, [Online].Available: https://www.researchgate.net/publication/311793888
  • [44] L. Zaretskiy, “Modified silicate binders new developments and applications,” International Journal of Metal Casting, vol. 10, no. 1, pp. 88–99, 2016.
  • [45] L. Zaretskiy, “Modified Silicate Binders New developments and applications,” International Journal of Metal Casting, vol. 10, no. 1, pp. 88–99, 2016.
  • [46] L. Feng, H. Zhang, “Superhydrophobic aluminium alloy surface: Fabrication, structure, and corrosion resistance,” Physicochemical Engineering Aspects, vol. 441, pp. 319–325, 2014.
  • [47] B. Tylkowski, I. Tsibranska, “Overview of main techniques used for membrane characterization,” Journal of Chemical Technology and Metallurgy, vol. 50, 1 pp. 3-12, 2015.
  • [48] M. Mantel, J. P. Wightman, “Influence of the surface chemistry on the wettability of stainless steel,” Surface and Interface Analysis, vol. 21, pp. 595–605, 1994.
  • [49] A. R. Luz, L. S. Santos, C. M. Lepienski, P. B. Kuroda, “Characterization of the morphology, structure and wettability of phase dependent lamellar and nanotube Oxides on Anodized Ti-10Nb Alloy,” Applied Surface Science, vol. 448, pp. 30–40, 2018.
  • [50] D. Crotty, “Zinc alloy plating for the automotive industry,” Metal Finishing, vol. 94, pp. 56-58, 1996.
  • [51] Teknorot (2023). Cataphoresis [Online]. Available: https://www.teknorot.com/en/cataphoresca/
  • [52] GEOMET® (2023) Protection Principals,. [Online]. Available: www.nofmetalcoatings.com
Year 2024, , 220 - 236, 29.02.2024
https://doi.org/10.16984/saufenbilder.1345904

Abstract

Supporting Institution

Uzman Kataforez Yüzey Kaplama San. ve Tic. A.Ş.

Thanks

Laboratuvar olanakları için "UZMAN KATAFOREZ" e teşekkür ederiz.

References

  • [1] G. Koch, “Cost of corrosion,” Trends in oil and gas corrosion research and technologies: Production and transmission, Elsevier Inc., A. M. El-Sherik, 2017, pp. 3–30.
  • [2] J. Kinugasa, F. Yuse, M. Tsunezawa, M. Nakaya, “Effect of corrosion resistance and rust characterization for hydrogen absorption into steel under an atmospheric corrosion condition,” ISIJ International, vol. 56, pp. 459–464, 2016.
  • [3] H. Li, Y. He, P. Luo, Y. Fan, H. Yu, Y. Wang, T. He, Z. Li, H. Zhang, “Influence of pulse frequency on Corrosion Resistance and Mechanical Properties of Ni-W/B4C Composite Coatings,” Colloids Surface A Physicochemical Engineering Asp, vol. 629, 127406, 2021.
  • [4] A. Karadag, E. Duru, M. Uysal, H. Akbulut, “Tribological performance of Ni-W/PTFE composite coating,” vol. 26, no. 4A, pp. 2885–2893, 2022.
  • [5] H. Gül, M. Uysal, H. Akbulut, A. Alp, “Effect of PC electrodeposition on the structure and tribological behavior of Ni-Al2O3 nanocomposite coatings,” Surface Coating Technology, vol. 258, pp. 1202–1211, 2014.
  • [6] Y. Yang, L. Qu, L. Dai, T. S. Kang, M. Durstock, “Electrophoresis coating of titanium dioxide on aligned carbon canotubes for controlled syntheses of photoelectronic nanomaterials,” Advanced Materials, vol. 19, no. 9, pp. 1239–1243, 2007.
  • [7] S. M. A. Shibli, B. N. Meena, R. Remya, “A review on recent approaches in the field of hot dip Zinc Galvanizing process,” Surface Coating Technology, vol. 262, pp. 210–215, 2015.
  • [8] A. R. Marder, “The metallurgy of Zinc-Coated steel,” Progress in Materials Science, vol. 45, no. 3, pp. 191–271, 2000.
  • [9] H. Cheng Yu, B. Zhen Chen, X. Shi, X. Sun, B. Li, “Investigation of the Trivalent-Chrome Coating on 6063 Aluminum Alloy,” Materials Letters, vol. 62, no. 17–18, pp. 2828–2831, 2008.
  • [10] P. K. Sinha, R. Feser, “Phosphate coating on steel surfaces by an electrochemical method,” Surface Coating Technology, vol. 161, no. 2–3, pp. 158–168, 2002.
  • [11] H. Gul, İ. Usta, “Effect of Alumina Concentration on morphology, wear, and corrosion: Electroless Ni-W-P/Al2O3 composite coatings on aluminum surfaces,” Journal of Materials Engineering and Performance, vol. 32, no. 13, pp. 6107–6122, 2023.
  • [12] A. López-Ortega, R. Bayón, J. L. Arana, “Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater,” Surface Coating Technology, vol. 349, pp. 1083–1097, 2018.
  • [13] J. R. Lince, “Effective application of solid lubricants in spacecraft mechanisms,” Lubricants, vol. 8, p. 74, 2020.
  • [14] H. C. Barshilia, “Surface modification technologies for aerospace and engineering applications: Current trends, challenges and future prospects,” Transactions of the Indian National Academy of Engineering, vol. 6, no. 2, pp. 173–188, 2021.
  • [15] W. Skotnicki, D. Jędrzejczyk, “The Comparative analysis of the coatings deposited on the automotive parts by the cataphoresis method,” Materials, vol. 14, no. 20, p. 6155, 2021.
  • [16] M. Doerre, L. Hibbitts, G. Patrick, N. K. Akafuah, “Advances in automotive conversion coatings during pretreatment of the Body Structure: A Review,” Coatings, vol. 8, no. 11, p. 405, 2018.
  • [17] N. Sorour, W. Zhang, E. Ghali, G. Houlachi, “A review of organic additives in Zinc Electrodeposition process” Hydrometallurgy, vol. 171, pp. 320–332, 2017.
  • [18] “Home | ZINC. International Zinc Association. (2023, Jul. 17). Zinc essential for modern life [Online]. Available: https://www.zinc.org/
  • [19] N. Rawal. (2023). The Characteristics, Toxicity and Effects of Cadmium [Online]. Available: https://www.researchgate.net/publication/305778858
  • [20] R. Ding, S. Chen, J. Lv, W. Zhang, X. Zhao, J. Liu, X. Wang, T. Gui, B. Li, Y. Tang, W. Li, “Study on graphene modified organic anti-corrosion coatings: A comprehensive review,” Journal of Alloys and Compounds, vol. 806, pp. 611–635, 2019.
  • [21] B. Philip (2011). Evaluation of Corrosion in Crevices in Screw Joints Mats Thörnqvist [Online]. Available: https://www.diva-portal.org/smash/get/diva2:441388/FULLTEXT01.pdf
  • [22] D. Zhmurkin, “Corrosion Resistance of Bolt Coatings Technical Paper,” Tyco Electronics Harrisburg, PA, pp. 1-7, 2009.
  • [23] Benseler. (2023). New Dip-Spin System for Zinc Flake Coatings on Rack Parts All-Over Coating [Online]. Available: https://www.benseler.de/en/verfahren/beschichtung/geomet.php
  • [24] “Geomet Coating. (2023). Keys & Clamps.” [Online]. Available: https://www.keytechno.com/service/geomet-coating/
  • [25] K. Westphal, “An optimized coating system for fasteners with metric threads,” ATZ Worldwide, vol. 107, no. 5, pp. 8–10, 2005.
  • [26] R. B. Egêa, A. Primolini, B. I. Da Maia, “Development of friction coefficient controller for E-coat (KTL),” SAE Technical, 2018-36-0200, 2018.
  • [27] B. Oleksiak, K. Kołtało, R. Poloczek, “Application methods and selected properties of Zinc Flake coatings,” Metalurgija, vol. 60, pp. 162–164, 2021.
  • [28] M. R. Isa, O. S. Zaroog, M. A. Yunus, V. R. Sanny Bavu, N. Rosmi, “Effect of sandblasting process on mechanical properties of ASTM A516 Grade 70 Steel,” Key Engineering Materials, vol. 765, pp. 222–226, 2018.
  • [29] A. Rudawska, I. Danczak, M. Müller, and P. Valasek, “The effect of sandblasting on surface properties for adhesion,” International Journal of Adhesion and Adhesives, vol. 70, pp. 176–190, 2016.
  • [30] B. Herbáth, K. Kovács, M. Jakab, É. Makó, “Crystal structure and properties of Zinc Phosphate Layers on aluminium and steel alloy surfaces,” Crystals, vol. 13, p. 369, 2023.
  • [31] L. Kwiatkowski, “Phosphate coatings porosity: Review of new approaches,” Surface Engineering, vol. 20, no. 4, pp. 292–298, 2013.
  • [32] M. Kilinç, L. Akyalcın, “Kataforez kaplamalı çelik yüzeylere uygulanan dubleks kaplamanın korozyon dayanım performansı üzerindeki etkisinin incelenmesi,” Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, vol. 30, pp. 68–78, 2022.
  • [33] A. Ş. Yargıç, B. Eren, N. Özbay, “Enhancement of coating features by supporting Zinc-Based coating with cataphoresis process: Effect of acidity and coating thickness on the coating Quality,” Journal of Polytechnic, pp. 1, 2023.
  • [34] Yellow Powder Coating (2023). PPG Powder Coating Colors | PPG Powder Coatings [Online]. Available: https://powdercoatings.ppg.com/products/pctz39104-yellow
  • [35] S. J. García, J. Suay, “A comparative study between the results of different electrochemical techniques (EIS and AC/DC/AC) application to the optimisation of the cataphoretic and curing parameters of a primer for the automotive industry,” Progress in Organic Coatings vol.59, pp. 251–258, 2007.
  • [36] S. J. García, M. T. Rodríguez, R. Izquierdo, J. Suay, “Evaluation of cure temperature effects in cataphoretic automotive primers by electrochemical techniques,” Progress in Organic Coatings, vol.60, no.4, pp. 303–311, 2007.
  • [37] “Cross Hatch Method. (2023). [Online]. Available: https://www.elcometer.com/en/cross-hatch-method
  • [38] “Adhesion tests (2023). [Online]. Available: https://www.substech.com/dokuwiki/doku.php?id=adhesion_tests
  • [39] “ASTM D 870: 2002 Standard (2023). Practice for testing water resistance.” [Online]. Available: https://infostore.saiglobal.com/en-us/standards/astm-d870-02-151549_SAIG_ASTM_ASTM_357357/
  • [40] “MIL-STD-810 Test Method 507 Humidity-Crystal group.” (2023). [Online]. Available: https://www.crystalrugged.com/mil-std-810-test-method-507-humidity/
  • [41] DIN EN ISO 9227 – (2023) European Standards. [Online]. Available: https://www.en-standard.eu/din-en-iso-9227-corrosion-tests-in-artificial-atmospheres-salt-spray-tests-iso-9227-2022/
  • [42] SIST EN ISO 9227:2006 – (2023) Corrosion Tests in Artificial Atmospheres - Salt Spray Tests [Online]. Available: https://standards.iteh.ai/catalog/standards/sist/6e82d425-e4fd-4579-a86d-d94eddd1cb36/sist-en-iso-9227-2006
  • [43] B. Chatterjee, (2017) “Science and industry of processes for Zinc-based coatings with improved properties,” Jahrbuch Oberfl ächentechnik Band, pp 1-30, [Online].Available: https://www.researchgate.net/publication/311793888
  • [44] L. Zaretskiy, “Modified silicate binders new developments and applications,” International Journal of Metal Casting, vol. 10, no. 1, pp. 88–99, 2016.
  • [45] L. Zaretskiy, “Modified Silicate Binders New developments and applications,” International Journal of Metal Casting, vol. 10, no. 1, pp. 88–99, 2016.
  • [46] L. Feng, H. Zhang, “Superhydrophobic aluminium alloy surface: Fabrication, structure, and corrosion resistance,” Physicochemical Engineering Aspects, vol. 441, pp. 319–325, 2014.
  • [47] B. Tylkowski, I. Tsibranska, “Overview of main techniques used for membrane characterization,” Journal of Chemical Technology and Metallurgy, vol. 50, 1 pp. 3-12, 2015.
  • [48] M. Mantel, J. P. Wightman, “Influence of the surface chemistry on the wettability of stainless steel,” Surface and Interface Analysis, vol. 21, pp. 595–605, 1994.
  • [49] A. R. Luz, L. S. Santos, C. M. Lepienski, P. B. Kuroda, “Characterization of the morphology, structure and wettability of phase dependent lamellar and nanotube Oxides on Anodized Ti-10Nb Alloy,” Applied Surface Science, vol. 448, pp. 30–40, 2018.
  • [50] D. Crotty, “Zinc alloy plating for the automotive industry,” Metal Finishing, vol. 94, pp. 56-58, 1996.
  • [51] Teknorot (2023). Cataphoresis [Online]. Available: https://www.teknorot.com/en/cataphoresca/
  • [52] GEOMET® (2023) Protection Principals,. [Online]. Available: www.nofmetalcoatings.com
There are 52 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

İbrahim Usta 0000-0001-7557-9617

Oğuz Yılmaz 0009-0002-7300-8823

Minel Gül 0009-0004-5791-4222

Ahmet Can 0000-0002-0831-021X

Harun Gül 0000-0002-4589-3506

Early Pub Date February 27, 2024
Publication Date February 29, 2024
Submission Date August 21, 2023
Acceptance Date December 5, 2023
Published in Issue Year 2024

Cite

APA Usta, İ., Yılmaz, O., Gül, M., Can, A., et al. (2024). Effect of Adhesion and Corrosion Performance of Geomet Basecoat (321)- Topcoat (ML Black) Applications on Cataphoretic Coating. Sakarya University Journal of Science, 28(1), 220-236. https://doi.org/10.16984/saufenbilder.1345904
AMA Usta İ, Yılmaz O, Gül M, Can A, Gül H. Effect of Adhesion and Corrosion Performance of Geomet Basecoat (321)- Topcoat (ML Black) Applications on Cataphoretic Coating. SAUJS. February 2024;28(1):220-236. doi:10.16984/saufenbilder.1345904
Chicago Usta, İbrahim, Oğuz Yılmaz, Minel Gül, Ahmet Can, and Harun Gül. “Effect of Adhesion and Corrosion Performance of Geomet Basecoat (321)- Topcoat (ML Black) Applications on Cataphoretic Coating”. Sakarya University Journal of Science 28, no. 1 (February 2024): 220-36. https://doi.org/10.16984/saufenbilder.1345904.
EndNote Usta İ, Yılmaz O, Gül M, Can A, Gül H (February 1, 2024) Effect of Adhesion and Corrosion Performance of Geomet Basecoat (321)- Topcoat (ML Black) Applications on Cataphoretic Coating. Sakarya University Journal of Science 28 1 220–236.
IEEE İ. Usta, O. Yılmaz, M. Gül, A. Can, and H. Gül, “Effect of Adhesion and Corrosion Performance of Geomet Basecoat (321)- Topcoat (ML Black) Applications on Cataphoretic Coating”, SAUJS, vol. 28, no. 1, pp. 220–236, 2024, doi: 10.16984/saufenbilder.1345904.
ISNAD Usta, İbrahim et al. “Effect of Adhesion and Corrosion Performance of Geomet Basecoat (321)- Topcoat (ML Black) Applications on Cataphoretic Coating”. Sakarya University Journal of Science 28/1 (February 2024), 220-236. https://doi.org/10.16984/saufenbilder.1345904.
JAMA Usta İ, Yılmaz O, Gül M, Can A, Gül H. Effect of Adhesion and Corrosion Performance of Geomet Basecoat (321)- Topcoat (ML Black) Applications on Cataphoretic Coating. SAUJS. 2024;28:220–236.
MLA Usta, İbrahim et al. “Effect of Adhesion and Corrosion Performance of Geomet Basecoat (321)- Topcoat (ML Black) Applications on Cataphoretic Coating”. Sakarya University Journal of Science, vol. 28, no. 1, 2024, pp. 220-36, doi:10.16984/saufenbilder.1345904.
Vancouver Usta İ, Yılmaz O, Gül M, Can A, Gül H. Effect of Adhesion and Corrosion Performance of Geomet Basecoat (321)- Topcoat (ML Black) Applications on Cataphoretic Coating. SAUJS. 2024;28(1):220-36.