Research Article
BibTex RIS Cite
Year 2024, , 531 - 541, 30.06.2024
https://doi.org/10.16984/saufenbilder.1352961

Abstract

References

  • [1] D. M. Schubert, “Borates in Industrial Use BT - Group 13 Chemistry III: Industrial Applications,” H. W. Roesky, D. A. Atwood, Eds. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg, 2003, pp. 1–40.
  • [2] Z. Huang, S. Wang, R. D. Dewhurst, N. V. Ignatev, M. Finze, H. Braunschweig, “Boron: Its Role in Energy-Related Processes and Applications,” Angewandte Chemie- International Edition, vol. 59, no. 23, pp. 8800–8816, 2020.
  • [3] B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P.V. Veldhuizen, A. Verma, L. M. Weiss, T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Medicinal Chemistry, vol. 5, no. 6, pp. 653–676, 2013.
  • [4] T. Umegaki, J. M. Yan, X. B. Zhang, H. Shioyama, N. Kuriyama, Q. Xu, “Boron- and nitrogen-based chemical hydrogen storage materials,” International Journal of Hydrogen Energy, vol. 34, no. 5, pp. 2303–2311, 2009.
  • [5] Y. Fang X. Wang, “Metal-Free Boron-Containing Heterogeneous Catalysts,” Angewandte Chemie - International Edition, vol. 56, no. 49, pp. 15506–15518, 2017.
  • [6] I. Eryazici, N. Ramesh, C. Villa, “Electrification of the chemical industry—materials innovations for a lower carbon future,” MRS Bulletin, vol. 46, no. 12, pp. 1197–1204, Dec. 2021.
  • [7] I. Chorkendorff J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, 3rd Edition, Weinheim, Germany: Wiley-VCH Verlag, 2017, pp 1-21.
  • [8] D. S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlögl, “Metal-Free Heterogeneous Catalysis for Sustainable Chemistry,” ChemSusChem, vol. 3, no. 2, pp. 169–180, Feb. 2010.
  • [9] X. Gao, M. Liu, Y. Huang, W. Xu, X. Zhou, S. Yao, “Dimensional Understanding of Boron-Based Catalysts for Oxidative Propane Dehydrogenation: Structure and Mechanism,” ACS Catalysis, vol. 13, pp. 9667–9687, 2023.
  • [10] W. D. Lu, B. Qiu, Z. K. Liu, F. Wu, A. H. Lu, “Supported boron-based catalysts for oxidative dehydrogenation of light alkanes to olefins,” Catalysis Science and Technology, vol. 13, no. 6, pp. 1696–1707, 2023.
  • [11] D. Jana, C. L. Sun, L. C. Chen, K. H. Chen, “Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes,” Progress in Materials Science, vol. 58, no. 5, pp. 565–635, 2013.
  • [12] H. Wan, M. Qing, H. Wang, S. Liu, X. W. Liu, Y. Zhang, H. Gong, L. Li, W. Zhang, C. Song, X. D. Wen, Y. Yang, Y. W. Li, “Promotive effect of boron oxide on the iron-based catalysts for Fischer-Tropsch synthesis,” Fuel, vol. 281, no. 1, pp. 118714–118723, 2020.
  • [13] K. F. Tan, J. Chang, A. Borgna, M. Saeys, “Effect of boron promotion on the stability of cobalt Fischer-Tropsch catalysts,” Journal of Catalysis, vol. 280, no. 1, pp. 50–59, 2011.
  • [14] M. S. Yazıcı F. G. B. San, “Bor doplu CVD grafen üretimi ve yakıt pili performansı,” Journal of Boron, vol. 4, no. 3, pp. 141–147, 2019.
  • [15] J. S. Wang, G. C. Zhao, Y. Q. Qiu, C. G. Liu, “ Strong Boron–Carbon Bonding Interaction Drives CO2 Reduction to Ethanol over the Boron-Doped Cu(111) Surface: An Insight from the First-Principles Calculations ,” Journal of Physical Chemistry C, vol. 125, pp. 572–582, 2021.
  • [16] E. B. Şimşek, “Doping of boron in TiO 2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation,” Journal of Boron, vol. 2, no. 1, pp. 18–27, 2017.
  • [17] H. Zhao, H. Jiang, M. Cheng, Q. Lin, Y. Iv, Y. Xu, J. Xie, J. Liu, Z. Men, D. Ma, “Boron adsorption and its effect on stability and CO activation of χ-Fe5C2 catalyst: An ab initio DFT study,” Applied Catalysis A General, vol. 627, no. August, pp. 118382–118391, 2021.
  • [18] J. Li N. J. Coville, “Effect of boron on the sulfur poisoning of Co/TiO2 Fischer-Tropsch catalysts,” Applied Catalysis A General, vol. 208, no. 1–2, pp. 177–184, 2001.
  • [19] A. Almofleh H. A. Aljama, “Boron Doping to Limit Sulfur Poisoning on Metal Catalysts,” ChemCatChem, vol. 202201545, pp. 1–8, 2023.
  • [20] G. Kresse J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol. 47, no. 1, pp. 558–561, Jan. 1993.
  • [21] G. Kresse J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, no. 16, pp. 11169–11186, 1996.
  • [22] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996.
  • [23] M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, B. I. Lundqvist, “Van der Waals density functional for general geometries,” Physical Review Letters, vol. 92, no. 24, pp. 246401–246412, 2004.
  • [24] G. Roman-Perez J. M. Soler, “Efficient Implementation of a van der Waals Density Functional: Application to Double-Wall Carbon Nanotubes,” Physical Review Letters, vol. 103, no. 9, pp. 096102–096109, 2009.
  • [25] J. Klimes, D. R. Bowler, A. Michaelides, “Chemical accuracy for the van der Waals density functional,” Journal of Physics-Condensed Matter, vol. 22, no. 2, pp. 022201–022209, 2010.
  • [26] J. Klimes, D. R. Bowler, A. Michaelides, “Van der Waals density functionals applied to solids,” Physical Review B, vol. 83, no. 19, pp. 195131–195138, 2011.
  • [27] C. Chen, Q. Wang, G. Wang, B. Hou, L. Jia, D. Li, “Mechanistic insight into the C2 hydrocarbons formation from Syngas on fcc-Co(111) surface: A DFT study,” Journal of Physical Chemistry C, vol. 120, no. 17, pp. 9132–9147, 2016.
  • [28] P. E. Blochl, “Projector Augmented-Wave Method,” Physical Review B, vol. 50, no. 24, pp. 17953–17979, 1994.
  • [29] H. J. Monkhorst J. D. Pack, “Special Points For Brillouin-Zone Integrations,” Physical Review B, vol. 13, no. 12, pp. 5188–5192, 1976.
  • [30] G. Henkelman, B. P. Uberuaga, H. Jonsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths,” Journal of Chemical Physics, vol. 113, no. 22, pp. 9901–9904, 2000.
  • [31] Y. Daga A. C. Kizilkaya, “Mechanistic Insights into the Effect of Sulfur on the Selectivity of Cobalt-Catalyzed Fischer–Tropsch Synthesis: A DFT Study,” Catalysts, vol. 12, no. 4, pp. 425–441, 2022.
  • [32] D. R. Alfonso, “First-principles studies of H2S adsorption and dissociation on metal surfaces,” Surface Science, vol. 602, no. 16, pp. 2758–2768, 2008.
  • [33] R. Zhang, H. Liu, Q. Li, B. Wang, L. Ling, D. Li, “Insight into the role of the promoters Pt, Ru and B in inhibiting the deactivation of Co catalysts in Fischer-Tropsch synthesis,” Applied Surface Science, vol. 453, pp. 309–319, 2018.

Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights

Year 2024, , 531 - 541, 30.06.2024
https://doi.org/10.16984/saufenbilder.1352961

Abstract

The effect of boron promotion on atomic sulfur formation by hydrogen sulfide dissociation on Co(111), flat surfaces of cobalt nanoparticles, was investigated using Density Functional Theory calculations. The results show that on clean Co(111), hydrogen sulfide dissociation proceeds fast due to low activation barriers, yielding atomic sulfur on the cobalt surfaces. Boron promotion hinders the dissociation of hydrogen sulfide due to increased activation barriers. Furthermore, boron prevents the interaction of sulfur compounds with cobalt surface atoms, as these poisons bind on boron. The findings indicate that boron is an effective promoter that can be used to design sulfur resistant cobalt catalysts.

References

  • [1] D. M. Schubert, “Borates in Industrial Use BT - Group 13 Chemistry III: Industrial Applications,” H. W. Roesky, D. A. Atwood, Eds. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg, 2003, pp. 1–40.
  • [2] Z. Huang, S. Wang, R. D. Dewhurst, N. V. Ignatev, M. Finze, H. Braunschweig, “Boron: Its Role in Energy-Related Processes and Applications,” Angewandte Chemie- International Edition, vol. 59, no. 23, pp. 8800–8816, 2020.
  • [3] B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S. K. Banerjee, P.V. Veldhuizen, A. Verma, L. M. Weiss, T. Evans, “Boron chemicals in diagnosis and therapeutics,” Future Medicinal Chemistry, vol. 5, no. 6, pp. 653–676, 2013.
  • [4] T. Umegaki, J. M. Yan, X. B. Zhang, H. Shioyama, N. Kuriyama, Q. Xu, “Boron- and nitrogen-based chemical hydrogen storage materials,” International Journal of Hydrogen Energy, vol. 34, no. 5, pp. 2303–2311, 2009.
  • [5] Y. Fang X. Wang, “Metal-Free Boron-Containing Heterogeneous Catalysts,” Angewandte Chemie - International Edition, vol. 56, no. 49, pp. 15506–15518, 2017.
  • [6] I. Eryazici, N. Ramesh, C. Villa, “Electrification of the chemical industry—materials innovations for a lower carbon future,” MRS Bulletin, vol. 46, no. 12, pp. 1197–1204, Dec. 2021.
  • [7] I. Chorkendorff J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, 3rd Edition, Weinheim, Germany: Wiley-VCH Verlag, 2017, pp 1-21.
  • [8] D. S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlögl, “Metal-Free Heterogeneous Catalysis for Sustainable Chemistry,” ChemSusChem, vol. 3, no. 2, pp. 169–180, Feb. 2010.
  • [9] X. Gao, M. Liu, Y. Huang, W. Xu, X. Zhou, S. Yao, “Dimensional Understanding of Boron-Based Catalysts for Oxidative Propane Dehydrogenation: Structure and Mechanism,” ACS Catalysis, vol. 13, pp. 9667–9687, 2023.
  • [10] W. D. Lu, B. Qiu, Z. K. Liu, F. Wu, A. H. Lu, “Supported boron-based catalysts for oxidative dehydrogenation of light alkanes to olefins,” Catalysis Science and Technology, vol. 13, no. 6, pp. 1696–1707, 2023.
  • [11] D. Jana, C. L. Sun, L. C. Chen, K. H. Chen, “Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes,” Progress in Materials Science, vol. 58, no. 5, pp. 565–635, 2013.
  • [12] H. Wan, M. Qing, H. Wang, S. Liu, X. W. Liu, Y. Zhang, H. Gong, L. Li, W. Zhang, C. Song, X. D. Wen, Y. Yang, Y. W. Li, “Promotive effect of boron oxide on the iron-based catalysts for Fischer-Tropsch synthesis,” Fuel, vol. 281, no. 1, pp. 118714–118723, 2020.
  • [13] K. F. Tan, J. Chang, A. Borgna, M. Saeys, “Effect of boron promotion on the stability of cobalt Fischer-Tropsch catalysts,” Journal of Catalysis, vol. 280, no. 1, pp. 50–59, 2011.
  • [14] M. S. Yazıcı F. G. B. San, “Bor doplu CVD grafen üretimi ve yakıt pili performansı,” Journal of Boron, vol. 4, no. 3, pp. 141–147, 2019.
  • [15] J. S. Wang, G. C. Zhao, Y. Q. Qiu, C. G. Liu, “ Strong Boron–Carbon Bonding Interaction Drives CO2 Reduction to Ethanol over the Boron-Doped Cu(111) Surface: An Insight from the First-Principles Calculations ,” Journal of Physical Chemistry C, vol. 125, pp. 572–582, 2021.
  • [16] E. B. Şimşek, “Doping of boron in TiO 2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation,” Journal of Boron, vol. 2, no. 1, pp. 18–27, 2017.
  • [17] H. Zhao, H. Jiang, M. Cheng, Q. Lin, Y. Iv, Y. Xu, J. Xie, J. Liu, Z. Men, D. Ma, “Boron adsorption and its effect on stability and CO activation of χ-Fe5C2 catalyst: An ab initio DFT study,” Applied Catalysis A General, vol. 627, no. August, pp. 118382–118391, 2021.
  • [18] J. Li N. J. Coville, “Effect of boron on the sulfur poisoning of Co/TiO2 Fischer-Tropsch catalysts,” Applied Catalysis A General, vol. 208, no. 1–2, pp. 177–184, 2001.
  • [19] A. Almofleh H. A. Aljama, “Boron Doping to Limit Sulfur Poisoning on Metal Catalysts,” ChemCatChem, vol. 202201545, pp. 1–8, 2023.
  • [20] G. Kresse J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol. 47, no. 1, pp. 558–561, Jan. 1993.
  • [21] G. Kresse J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, no. 16, pp. 11169–11186, 1996.
  • [22] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996.
  • [23] M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, B. I. Lundqvist, “Van der Waals density functional for general geometries,” Physical Review Letters, vol. 92, no. 24, pp. 246401–246412, 2004.
  • [24] G. Roman-Perez J. M. Soler, “Efficient Implementation of a van der Waals Density Functional: Application to Double-Wall Carbon Nanotubes,” Physical Review Letters, vol. 103, no. 9, pp. 096102–096109, 2009.
  • [25] J. Klimes, D. R. Bowler, A. Michaelides, “Chemical accuracy for the van der Waals density functional,” Journal of Physics-Condensed Matter, vol. 22, no. 2, pp. 022201–022209, 2010.
  • [26] J. Klimes, D. R. Bowler, A. Michaelides, “Van der Waals density functionals applied to solids,” Physical Review B, vol. 83, no. 19, pp. 195131–195138, 2011.
  • [27] C. Chen, Q. Wang, G. Wang, B. Hou, L. Jia, D. Li, “Mechanistic insight into the C2 hydrocarbons formation from Syngas on fcc-Co(111) surface: A DFT study,” Journal of Physical Chemistry C, vol. 120, no. 17, pp. 9132–9147, 2016.
  • [28] P. E. Blochl, “Projector Augmented-Wave Method,” Physical Review B, vol. 50, no. 24, pp. 17953–17979, 1994.
  • [29] H. J. Monkhorst J. D. Pack, “Special Points For Brillouin-Zone Integrations,” Physical Review B, vol. 13, no. 12, pp. 5188–5192, 1976.
  • [30] G. Henkelman, B. P. Uberuaga, H. Jonsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths,” Journal of Chemical Physics, vol. 113, no. 22, pp. 9901–9904, 2000.
  • [31] Y. Daga A. C. Kizilkaya, “Mechanistic Insights into the Effect of Sulfur on the Selectivity of Cobalt-Catalyzed Fischer–Tropsch Synthesis: A DFT Study,” Catalysts, vol. 12, no. 4, pp. 425–441, 2022.
  • [32] D. R. Alfonso, “First-principles studies of H2S adsorption and dissociation on metal surfaces,” Surface Science, vol. 602, no. 16, pp. 2758–2768, 2008.
  • [33] R. Zhang, H. Liu, Q. Li, B. Wang, L. Ling, D. Li, “Insight into the role of the promoters Pt, Ru and B in inhibiting the deactivation of Co catalysts in Fischer-Tropsch synthesis,” Applied Surface Science, vol. 453, pp. 309–319, 2018.
There are 33 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Ali Can Kızılkaya 0000-0003-0623-648X

Early Pub Date June 6, 2024
Publication Date June 30, 2024
Submission Date August 31, 2023
Acceptance Date March 7, 2024
Published in Issue Year 2024

Cite

APA Kızılkaya, A. C. (2024). Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights. Sakarya University Journal of Science, 28(3), 531-541. https://doi.org/10.16984/saufenbilder.1352961
AMA Kızılkaya AC. Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights. SAUJS. June 2024;28(3):531-541. doi:10.16984/saufenbilder.1352961
Chicago Kızılkaya, Ali Can. “Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights”. Sakarya University Journal of Science 28, no. 3 (June 2024): 531-41. https://doi.org/10.16984/saufenbilder.1352961.
EndNote Kızılkaya AC (June 1, 2024) Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights. Sakarya University Journal of Science 28 3 531–541.
IEEE A. C. Kızılkaya, “Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights”, SAUJS, vol. 28, no. 3, pp. 531–541, 2024, doi: 10.16984/saufenbilder.1352961.
ISNAD Kızılkaya, Ali Can. “Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights”. Sakarya University Journal of Science 28/3 (June 2024), 531-541. https://doi.org/10.16984/saufenbilder.1352961.
JAMA Kızılkaya AC. Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights. SAUJS. 2024;28:531–541.
MLA Kızılkaya, Ali Can. “Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights”. Sakarya University Journal of Science, vol. 28, no. 3, 2024, pp. 531-4, doi:10.16984/saufenbilder.1352961.
Vancouver Kızılkaya AC. Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights. SAUJS. 2024;28(3):531-4.