This study investigates the alkali-silica reaction (ASR) and mechanical properties of mortars containing crumb and powder rubber instead of river sand. In this regard, mortars were produced using waste rubber whose ratios in the mixture are 0%, 3%, 6%, 9%, 12%, 15%, 18%, and 21%. ASR expansion, compressive and flexural strength tests were conducted on the samples. ASR measurements were performed on days 3, 7, 14, 21, and 28. Besides, at the end of the ASR experiment, the microstructures of the mortars were examined using scanning electron microscope (SEM) images. Examining the results of this study reveals that the use of waste rubber in rising portions in the mortars led to an increase in the ASR expansions of the mortars. The study shows that the ASR expansions of the mortar samples that have 9% and 15% waste rubber replacement are comparatively higher than the other mortar samples. Furthermore, the results of the SEM analysis verified this finding. The study demonstrates that 3% of waste rubber mortar samples have the highest compressive and flexural strengths. On the other side, the ASR expansion of the mortars with 3% substituted waste rubber was considerably low compared to other mortars containing waste rubber. These findings (ASR, compressive and flexural strength tests results) show that using 3% waste rubber is ideal for producing mortars and supports a sustainable production approach in the sector.
Primary Language | English |
---|---|
Subjects | Civil Engineering (Other) |
Journal Section | Research Articles |
Authors | |
Early Pub Date | April 24, 2024 |
Publication Date | April 30, 2024 |
Submission Date | October 26, 2023 |
Acceptance Date | December 30, 2023 |
Published in Issue | Year 2024 |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.