EOG Region Detection using Fuzzy k-NN for Virtual Reality Applications
Year 2024,
, 1146 - 1157, 31.12.2024
Emre Güngör
,
Soydan Serttaş
Abstract
Virtual Reality (VR) systems have become widespread for a decade with the mass production of VR headsets. Advancement in the VR industry benefits both biomedical and computer gaming fields to create better Human-Computer Interface (HCI) applications. In this study, Electrooculogram (EOG) signals are studied on a calibrated A4 paper to simulate reading and tracking eye movement in different regions for VR user interface applications. For that reason, eye activity features from EOG are used to identify relative 2D spatial coordinates and classified with the fuzzy k-Nearest Neighbor (fuzzy k-NN) method. Within the experimental setup, different behaviors such as blinking and depth focus change signals are recorded with constant depth regional borders are analyzed on an A4 paper with reading eye movement recordings. In experimental results, fuzzy k-NN classification results are obtained from observed regional eye movement. The study shows that the fuzzy k-NN method to detect regions at a reading distance is feasible for user interface applications in VR. So, by setting rendering focus at the detected regional area, eye strain can be reduced during prolonged VR sessions especially when reading and/or on user interfaces.
References
- R. Zemblys, O. Komogortsev, “Developing Photo-Sensor Oculography (PS-OG) System for Virtual Reality Headsets,” in Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, 2018, pp. 1-3.
- H. Nisar, H. W. Khow, K. H. Yeap, “Brain-Computer Interface: Controlling A Robotic Arm Using Facial Expressions,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 26, no. 2, 707-720, 2018.
- J. Heo, H. Yoon, K. S. Park, “A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces,” Sensors, vol. 17, no. 7, 1485, 2017.
- E. English, A. Hung, E. Kesten, D. Latulipe, Z. Jin, “EyePhone: A Mobile EOG-based Human-Computer Interface for Assistive Healthcare,” 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 2013, pp. 105-108.
- Y. S. Pai, M. L. Bait, J. Lee, J. Xu, R. L. Peiris, W. Woo, M. Billinghurst, K. Kunze, “NapWell: An EOG-Based Sleep Assistant Exploring The Effects of Virtual Reality on Sleep Onset,” Virtual Reality, vol. 26, no. 2, 437-451, 2022.
- N. Barbara, T. A. Camilleri, K. P. Camilleri, “EOG-Based Eye Movement Detection and Gaze Estimation for an Asynchronous Virtual Keyboard,” Biomedical Signal Processing and Control, no. 47, 159-167, 2019.
- M. R. Kim, G. Yoon, “Control Signal from EOG Analysis and Its Application,” International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol:7, no:10, 1352-1355, 2013.
- G. Çit, K. Ayar, C. Öz, “A Real-Time Virtual Sculpting Application by Using an Optimized Hash-Based Octree,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, no. 4, 2274-2289, 2016.
- M. R. H. Samadi, N. Cooke, “EEG Signal Processing For Eye Tracking,” in European Signal Processing Conference, Lisbon, Portugal, 2014, pp. 2030-2034.
- M. Dursun, S. Ozsen, S. Günes, B. Akdemir, S. Yosunkaya, “Automated Elimination of EOG Artifacts in Sleep EEG Using Regression Method,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 27, no. 2, 1094-1108, 2019.
- M. Vidal, A. Bulling, H. Gellersen, “Analysing EOG Signal Features for The Discrimination of Eye Movements With Wearable Devices,” In Proceedings of the 1st international workshop on pervasive eye tracking & mobile eye-based interaction, Beijing, China, 2011, pp. 15-20.
- A. Yazdani, T. Ebrahimi, U. Hoffmann, “Classification of EEG Signals Using Dempster Shafer Theory and A K-Nearest Neighbor Classifier,” 4th International IEEE/EMBS Conference on Neural Engineering, Antalya, Turkey, 2009, pp. 327-330.
- S. Qureshi, S. Karrila, S. Vanichayobon, “Human Sleep Scoring Based on K-Nearest Neighbors,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 26, no. 6, 2802-2818, 2018.
- K. Mohanchandra, S. Saha, K. S. Murthy, G. Lingaraju, “Distinct Adoption of K-Nearest Neighbour and Support Vector Machine in Classifying EEG Signals of Mental Tasks,” International Journal of Intelligent Engineering Informatics, vol. 3, no. 4, 313, 2015.
- O. Aydemir, S. Pourzare, T. Kayikcioglu, “Classifying Various EMG and EOG Artifacts in EEG Signals,” Przegla¸d Elektrotechniczny, vol. 88, no. 11, 218-222, 2012.
- T. Wissel, R. Palaniappan, “Considerations on Strategies to Improve EOG Signal Analysis,” International Journal of Artificial Life Research, vol. 2, no. 3, 6-21, 2011.
- M. Toivanen, K. Pettersson, K. Lukander, “A Probabilistic Real-Time Algorithm for Detecting Blinks, Saccades, and Fixations from EOG Data,” Journal of Eye Movement Research, vol. 8, no. 2, 1-14, 2015.
- J. S. Lee, Y. H. Liu, W. M. Chen, K. K. Lin, S. T. Chang, A. Y. Lim, C. H. Hou, W. S. Peng, L. C. See, “Association of Sports Vision with Age, Gender, and Static Visual Acuity Among Nonathletic Population,” Taiwan Journal of Ophthalmology, vol. 12, no. 1, 53-61, 2022.
- S. Bang, & W. Woo, “Enhancing the Reading Experience on AR HMDs by Using Smartphones as Assistive Displays,” In 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Shanghai, China, 2023, pp. 378-386.
- B. Li, W. Zhang, R. Zhou, C. Yang, & Z. Li, “A Comparative Ergonomics Study: Performing Reading-based Tasks on a Large-scale Tabletop vs. Laptop,”International Journal of Industrial Ergonomics, vol. 42, no. 1, 156-161, 2012.
- N. Bhatia, Vandana. “Survey of Nearest Neighbor Techniques,” International Journal of Computer Science and Information Security, vol. 8, no. 2, 302-305, 2010.
- S. Uddin, I. Haque, H. Lu, M. A. Moni, E. Gide, “Comparative Performance Analysis of K-Nearest Neighbour (KNN) Algorithm and Its Different Variants for Disease Prediction,” Scientific Reports, vol. 12, no. 1, 1-11, 2022.
- P. R. Desai, P. N. Desai, K. D. Ajmera, K. Mehta, “A Review Paper on Oculus Rift-A Virtual Reality Headset,” International Journal of Engineering Trends and Technology, vol.13, no. 4, 175-179, 2014.
- Biopac Systems Inc., “MP system hardware guide,” Jun. 10, 2023. [Online]. Available: https://www.biopac.com/wp-content/uploads/MP_Hardware_Guide.pdf
- J. M. Keller, M. R. Gray, J. A. Givens, “A Fuzzy K-Nearest Neighbor Algorithm,” IEEE Transactions On Systems, Man, and Cybernetics, no. 4, 580-585, 1985.
- N. Biswas, S. Chakraborty, S.S. Mullick, S. Das, “A Parameter Independent Fuzzy Weighted K-Nearest Neighbor Classifier,” Pattern Recognition Letters, vol. 101, 80-87, 2018.
- E. Gungor, “fuzzyKNN-EOG-region-detection-for-VR,” Jan. 12, 2023. [Online]. Available: https://github.com/mregungor/fuzzyKNN-EOG-region-detection-for-VR
- M. S. Reddy, B. Narasimha, E. Suresh, K. S. Rao, “Analysis of EOG Signals Using Wavelet Transform for Detecting Eye Blinks,” International Conference on Wireless Communications & Signal Processing (WCSP), 2010, pp. 1-4.
- H. W. Yoon, J.-Y. Chung, M.-S. Song, H. Park, “Neural Correlates of Eye Blinking; Improved by Simultaneous fMRI and EOG Measurement,” Neuroscience letters, vol. 381, no. 1-2, 26-30, 2005.
- N. A. Dodgson, “Variation and Extrema of Human Interpupillary Distance,” In Stereoscopic Displays and Virtual Reality Systems XI, Vol. 5291, 2004, pp. 36-46.
Year 2024,
, 1146 - 1157, 31.12.2024
Emre Güngör
,
Soydan Serttaş
References
- R. Zemblys, O. Komogortsev, “Developing Photo-Sensor Oculography (PS-OG) System for Virtual Reality Headsets,” in Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, 2018, pp. 1-3.
- H. Nisar, H. W. Khow, K. H. Yeap, “Brain-Computer Interface: Controlling A Robotic Arm Using Facial Expressions,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 26, no. 2, 707-720, 2018.
- J. Heo, H. Yoon, K. S. Park, “A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces,” Sensors, vol. 17, no. 7, 1485, 2017.
- E. English, A. Hung, E. Kesten, D. Latulipe, Z. Jin, “EyePhone: A Mobile EOG-based Human-Computer Interface for Assistive Healthcare,” 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 2013, pp. 105-108.
- Y. S. Pai, M. L. Bait, J. Lee, J. Xu, R. L. Peiris, W. Woo, M. Billinghurst, K. Kunze, “NapWell: An EOG-Based Sleep Assistant Exploring The Effects of Virtual Reality on Sleep Onset,” Virtual Reality, vol. 26, no. 2, 437-451, 2022.
- N. Barbara, T. A. Camilleri, K. P. Camilleri, “EOG-Based Eye Movement Detection and Gaze Estimation for an Asynchronous Virtual Keyboard,” Biomedical Signal Processing and Control, no. 47, 159-167, 2019.
- M. R. Kim, G. Yoon, “Control Signal from EOG Analysis and Its Application,” International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol:7, no:10, 1352-1355, 2013.
- G. Çit, K. Ayar, C. Öz, “A Real-Time Virtual Sculpting Application by Using an Optimized Hash-Based Octree,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, no. 4, 2274-2289, 2016.
- M. R. H. Samadi, N. Cooke, “EEG Signal Processing For Eye Tracking,” in European Signal Processing Conference, Lisbon, Portugal, 2014, pp. 2030-2034.
- M. Dursun, S. Ozsen, S. Günes, B. Akdemir, S. Yosunkaya, “Automated Elimination of EOG Artifacts in Sleep EEG Using Regression Method,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 27, no. 2, 1094-1108, 2019.
- M. Vidal, A. Bulling, H. Gellersen, “Analysing EOG Signal Features for The Discrimination of Eye Movements With Wearable Devices,” In Proceedings of the 1st international workshop on pervasive eye tracking & mobile eye-based interaction, Beijing, China, 2011, pp. 15-20.
- A. Yazdani, T. Ebrahimi, U. Hoffmann, “Classification of EEG Signals Using Dempster Shafer Theory and A K-Nearest Neighbor Classifier,” 4th International IEEE/EMBS Conference on Neural Engineering, Antalya, Turkey, 2009, pp. 327-330.
- S. Qureshi, S. Karrila, S. Vanichayobon, “Human Sleep Scoring Based on K-Nearest Neighbors,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 26, no. 6, 2802-2818, 2018.
- K. Mohanchandra, S. Saha, K. S. Murthy, G. Lingaraju, “Distinct Adoption of K-Nearest Neighbour and Support Vector Machine in Classifying EEG Signals of Mental Tasks,” International Journal of Intelligent Engineering Informatics, vol. 3, no. 4, 313, 2015.
- O. Aydemir, S. Pourzare, T. Kayikcioglu, “Classifying Various EMG and EOG Artifacts in EEG Signals,” Przegla¸d Elektrotechniczny, vol. 88, no. 11, 218-222, 2012.
- T. Wissel, R. Palaniappan, “Considerations on Strategies to Improve EOG Signal Analysis,” International Journal of Artificial Life Research, vol. 2, no. 3, 6-21, 2011.
- M. Toivanen, K. Pettersson, K. Lukander, “A Probabilistic Real-Time Algorithm for Detecting Blinks, Saccades, and Fixations from EOG Data,” Journal of Eye Movement Research, vol. 8, no. 2, 1-14, 2015.
- J. S. Lee, Y. H. Liu, W. M. Chen, K. K. Lin, S. T. Chang, A. Y. Lim, C. H. Hou, W. S. Peng, L. C. See, “Association of Sports Vision with Age, Gender, and Static Visual Acuity Among Nonathletic Population,” Taiwan Journal of Ophthalmology, vol. 12, no. 1, 53-61, 2022.
- S. Bang, & W. Woo, “Enhancing the Reading Experience on AR HMDs by Using Smartphones as Assistive Displays,” In 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Shanghai, China, 2023, pp. 378-386.
- B. Li, W. Zhang, R. Zhou, C. Yang, & Z. Li, “A Comparative Ergonomics Study: Performing Reading-based Tasks on a Large-scale Tabletop vs. Laptop,”International Journal of Industrial Ergonomics, vol. 42, no. 1, 156-161, 2012.
- N. Bhatia, Vandana. “Survey of Nearest Neighbor Techniques,” International Journal of Computer Science and Information Security, vol. 8, no. 2, 302-305, 2010.
- S. Uddin, I. Haque, H. Lu, M. A. Moni, E. Gide, “Comparative Performance Analysis of K-Nearest Neighbour (KNN) Algorithm and Its Different Variants for Disease Prediction,” Scientific Reports, vol. 12, no. 1, 1-11, 2022.
- P. R. Desai, P. N. Desai, K. D. Ajmera, K. Mehta, “A Review Paper on Oculus Rift-A Virtual Reality Headset,” International Journal of Engineering Trends and Technology, vol.13, no. 4, 175-179, 2014.
- Biopac Systems Inc., “MP system hardware guide,” Jun. 10, 2023. [Online]. Available: https://www.biopac.com/wp-content/uploads/MP_Hardware_Guide.pdf
- J. M. Keller, M. R. Gray, J. A. Givens, “A Fuzzy K-Nearest Neighbor Algorithm,” IEEE Transactions On Systems, Man, and Cybernetics, no. 4, 580-585, 1985.
- N. Biswas, S. Chakraborty, S.S. Mullick, S. Das, “A Parameter Independent Fuzzy Weighted K-Nearest Neighbor Classifier,” Pattern Recognition Letters, vol. 101, 80-87, 2018.
- E. Gungor, “fuzzyKNN-EOG-region-detection-for-VR,” Jan. 12, 2023. [Online]. Available: https://github.com/mregungor/fuzzyKNN-EOG-region-detection-for-VR
- M. S. Reddy, B. Narasimha, E. Suresh, K. S. Rao, “Analysis of EOG Signals Using Wavelet Transform for Detecting Eye Blinks,” International Conference on Wireless Communications & Signal Processing (WCSP), 2010, pp. 1-4.
- H. W. Yoon, J.-Y. Chung, M.-S. Song, H. Park, “Neural Correlates of Eye Blinking; Improved by Simultaneous fMRI and EOG Measurement,” Neuroscience letters, vol. 381, no. 1-2, 26-30, 2005.
- N. A. Dodgson, “Variation and Extrema of Human Interpupillary Distance,” In Stereoscopic Displays and Virtual Reality Systems XI, Vol. 5291, 2004, pp. 36-46.