Research Article
BibTex RIS Cite
Year 2024, , 742 - 755, 31.08.2024
https://doi.org/10.16984/saufenbilder.1404885

Abstract

References

  • M. Ghosh, K. Manoli, X. Shen, J. Wang, A. K. Ray, “Solar photocatalytic degradation of caffeine with titanium dioxide and zinc oxide nanoparticles,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 377, pp. 1-7, May 2019.
  • L. Cizmas, V. K. Sharma, C. M. Gray, T. J. McDonald, “Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk,” Environmental Chemistry Letters, vol. 13, no. 4, pp. 381-394, Aug. 2015.
  • S. W. da Silva, E. M. O. Navarro, M. A. S. Rodrigues, A. M. Bernardes, V. Pérez-Herranz, “Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin,” Journal of Electroanalytical Chemistry, vol. 832, pp. 112-120, Jan. 2019.
  • T. S. Oliveira, M. Murphy, N. Mendola, V. Wong, D. Carlson, L. Waring, “Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS,” Science of the Total Environment, vol. 518-519, pp. 459-478, Jun. 2015.
  • A. Pal, K. Y. H. Gin, A. Y. C. Lin, M. Reinhard, “Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects,” Science of the Total Environment, vol. 408, no. 24, pp. 6062-6069, Nov. 2010.
  • L. Guardabassi, A. Petersen, J. E. Olsen, A. Dalsgaard, “Antibiotic resistance in Acinetobacter spp. isolated from sewers receiving waste effluent from a hospital and a pharmaceutical plant,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3499-3502, Sep. 1998.
  • A. Rajkamal, H. Kim, “Theoretical verification on adsorptive removal of caffeine by carbon and nitrogen-based surfaces: Role of charge transfer, π electron occupancy, and temperature,” Chemosphere, vol. 339, p. 139667, Oct. 2023.
  • M. A. Heckman, J. Weil, E. G. de Mejia, “Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters,” Journal of Food Science, vol. 75, no. 3, pp. 77-87, Apr. 2010.
  • T. H. Pham, N. M. Viet, P. T. T. Hoai, N. H. Tung, H. M. Tran, M. G. Mapari, T. Kim, “Synthesis of solar-driven Cu-doped graphitic carbon nitride photocatalyst for enhanced removal of caffeine in wastewater,” Environmental Research, vol. 233, p. 116483, Sep. 2023.
  • S. Mayson, I. D. Williams, “Applying a circular economy approach to valorize spent coffee grounds,” Resources Conservation and Recycling, vol. 172, p. 105659, Sep. 2021.
  • M. Fernández, M. Fernández, A. Laca, A. Laca, M. Díaz, “Seasonal occurrence and removal of pharmaceutical products in municipal wastewaters,” Journal of Environmental Chemical Engineering, vol. 2, no. 1, pp. 495-502, Mar. 2014.
  • J. Vymazal, T. D. Březinová, M. Koželuh, L. Kule, “Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic-the first year of monitoring,” Ecological Engineering, vol. 98, pp. 354-364, Jan. 2017.
  • Y. Picó, R. Alvarez-Ruiz, A. H. Alfarhan, M. A. El-Sheikh, H. O. Alshahrani, D. Barceló, “Pharmaceuticals, pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network (Saudi Arabia) and its shallow lakes,” Science of The Total Environment, vol. 701, p. 135021, Jan. 2020.
  • M. Ashfaq, Y. Li, M. S. U. Rehman, M. Zubair, G. Mustafa, M. F. Nazar, C. P. Yu, Q. Sun, “Occurrence, spatial variation and risk assessment of pharmaceuticals and personal care products in urban wastewater, canal surface water, and their sediments: A case study of Lahore, Pakistan,” Science of the Total Environment, vol. 688, pp. 653-663, Oct. 2019.
  • L. Bo, L. Feng, J. Fu, X. Li, P. Li, Y. Zhang, “The fate of typical pharmaceuticals in wastewater treatment plants of Xi’an city in China,” Journal of Environmental Chemical Engineering, vol. 3, no. 3, pp. 2203-2211, Sep. 2015.
  • Z. Ayman, M. Işik, “Pharmaceutically active compounds in water, Aksaray, Turkey,” Clean-Soil Air Water, vol. 43, no. 10, pp. 1381-1388, Oct. 2015.
  • O. Hillebrand, K. Nödler, T. Licha, M. Sauter, T. Geyer, “Caffeine as an indicator for the quantification of untreated wastewater in karst systems,” Water Research, vol. 46, no. 2, pp. 395-402, Feb. 2012.
  • F. Comeau, C. Surette, G. L. Brun, R. Losier, “The occurrence of acidic drugs and caffeine in sewage effluents and receiving waters from three coastal watersheds in Atlantic Canada,” Science of the Total Environment, vol. 396, no. 2-3, pp. 132-146, Jun. 2008.
  • H. B. Quesada, T. P. de Araújo, L. F. Cusioli, M. A. S. D. de Barros, R. G. Gomes, R. Bergamasco, “Caffeine removal by chitosan/activated carbon composite beads: Adsorption in tap water and synthetic hospital wastewater,” Chemical Engineering Research and Design, vol. 184, pp. 1-12, Aug. 2022.
  • J. Tejedor, R. Álvarez-Briceño, V. H. Guerrero, C. A. Villamar-Ayala, “Removal of caffeine using agro-industrial residues in fixed-bed columns: Improving the adsorption capacity and efficiency by selecting adequate physical and operational parameters,” Journal of Water Process Engineering, vol. 53, p. 103778, Jul. 2023.
  • K. K. Beltrame, A. L. Cazetta, P. S. C. de Souza, L. Spessato, T. L. Silva, V. C. Almeida, “Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves,” Ecotoxicology and Environmental Safety, vol. 147, pp. 64-71, Jan. 2018.
  • A. Moghaddasfar, M. Darbandi, Z. A. Li, “Mesoporous cobalt oxide nanoparticles synthesized by a sonochemical method in the presence of a deep eutectic solvent for oxidative sonophotocatalytic decomposition of caffeine,” Journal of Water Process Engineering, vol. 54, p. 104056, Aug. 2023.
  • S. Cheng, X. Zhang, X. Yang, C. Shang, W. Song, J. Fang, Y. Pan, “The Multiple Role of Bromide Ion in PPCPs Degradation under UV/Chlorine Treatment,” Environmental Science and Technology, vol. 52, no. 4, pp. 1806-1816, Feb. 2018.
  • F. S. Souza, L. A. Féris, “Degradation of caffeine by advanced oxidative processes: O3 and O3/UV,” Ozone: Science and Engineering, vol. 37, no. 4, pp. 379-384, Jan. 2015.
  • K. Guo, Z. Wu, S. Yan, B. Yao, W. Song, Z. Hua, X. Zhang, X. Kong, X. Li, J. Fong, “Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements,” Water Research, vol. 147, pp. 184-194, Dec. 2018.
  • N. Tran, P. Drogui, L. Nguyen, S. K. Brar, “Optimization of sono-electrochemical oxidation of ibuprofen in wastewater,” Journal of Environmental Chemical Engineering, vol. 3, no. 4, pp. 2637-2646, Dec. 2015.
  • R. J. A. Felisardo, E. Brillas, E. Bezerra Cavalcanti, S. Garcia-Segura, “Revealing degradation of organic constituents of urine during the electrochemical oxidation of ciprofloxacin via boron-doped diamond anode,” Separation and Purification Technology, vol. 331, p. 125655, Mar. 2024.
  • H. Hai, X. Xing, S. Li, S. Xia, J. Xia, “Electrochemical oxidation of sulfamethoxazole in BDD anode system: Degradation kinetics, mechanisms and toxicity evaluation,” Science of The Total Environment, vol. 738, p. 139909, Oct. 2020.
  • G. D. Değermenci, “Removal of reactive azo dye using platinum-coated titanium electrodes with the electro-oxidation process,” Desalination and Water Treatment, vol. 218, pp. 436-443, Apr. 2021.
  • B. A. Fil, S. Günaslan, “Treatment of Slaughterhouse Wastewaters with Ti/IrO2/RuO2 Anode and Investigation of Energy Consumption,” Arabian Journal for Science and Engineering, vol. 48, no. 1, pp. 457-466, Jan. 2023.
  • E. Brillas, A. Thiam, S. Garcia-Segura, “Incineration of acidic aqueous solutions of dopamine by electrochemical advanced oxidation processes with Pt and BDD anodes,” Journal of Electroanalytical Chemistry, vol. 775, pp. 189-197, Aug. 2016.
  • A. Kapałka, G. Fóti, C. Comninellis, “The importance of electrode material in environmental electrochemistry. Formation and reactivity of free hydroxyl radicals on boron-doped diamond electrodes,” Electrochimica Acta, vol. 54, no. 7, pp. 2018-2023, Feb. 2009.
  • B. Boye, E. Brillas, B. Marselli, P. A. Michaud, C. Comninellis, M. M. Dieng, “Electrochemical decontamination of waters by advanced oxidation processes (AOPS): Case of the mineralization of 2,4,5-T on BDD electrode,” Bulletin of the Chemical Society of Ethiopia, vol. 18, no. 2, pp. 205-214, Dec. 2004.
  • J. E. L. Santos, D. R. da Silva, C. A. Martínez-Huitle, E. V. dos Santos, M. A. Quiroz, “Cathodic hydrogen production by simultaneous oxidation of methyl red and 2,4-dichlorophenoxyacetate aqueous solutions using Pb/PbO2, Ti/Sb-doped SnO2 and Si/BDD anodes. Part 1: Electrochemical oxidation,” RSC Advances, vol. 10, no. 62, pp. 37695-37706, Oct. 2020.
  • B. Marselli, J. Garcia-Gomez, P.-A. Michaud, M. A. Rodrigo, C. Comninellis, “Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes,” Journal ofThe Electrochemical Society, vol. 150, no. 3, pp. 79-83, Feb. 2003.
  • G. Li, S. Zhou, Z. Shi, X. Meng, L. Li, B. Liu, “Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: mechanisms, kinetics and pathways,” Environmental Science and Pollution Research, vol. 26, no. 17, pp. 17740-17750, Jun. 2019.
  • S. Cho, C. Kim, I. Hwang, “Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER),” Chemosphere, vol. 259, p. 127382, Nov. 2020.
  • E. GilPavas, P. Arbeláez-Castaño, J. Medina, D. A. Acosta, “Combined electrocoagulation and electro-oxidation of industrial textile wastewater treatment in a continuous multi-stage reactor,” Water Science and Technology, vol. 76, no. 9, pp. 2515-2525, Nov. 2017.
  • N. Flores, I. Sirés, R. M. Rodríguez, F. Centellas, P. L. Cabot, J. A. Garrido, E. Brillas “Removal of 4-hydroxyphenylacetic acid from aqueous medium by electrochemical oxidation with a BDD anode: Mineralization, kinetics and oxidation products,” Journal of Electroanalytical Chemistry, vol. 793, pp. 58-65, May 2017.
  • E. B. Cavalcanti, S. Garcia-Segura, F. Centellas, E. Brillas, “Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: Degradation kinetics and oxidation products,” Water Research, vol. 47, no. 5, pp. 1803-1815, Apr. 2013.
  • M. Panizza, G. Cerisola, “Application of diamond electrodes to electrochemical processes,” Electrochimica Acta, vol. 51, no. 2, pp. 191-199, Oct. 2005.
  • I. Sirés, E. Brillas, M. A. Oturan, M. A. Rodrigo, M. Panizza, “Electrochemical advanced oxidation processes: Today and tomorrow. A review,” Environmental Science and Pollution Research, vol. 21, no. 14, pp. 8336-8367, Apr. 2014.
  • S. Kul, R. Boncukcuoğlu, F. Ekmekyapar Torun, Z. Reçber, O. Sözüdoğru, E. Aladağ, “Investigation of the Treatment of Olive Mill Wastewater by Electrooxidation,” Water Air Soil and Pollution, vol. 233, no. 10, p. 421, Oct. 2022.
  • A. Dargahi, D. Nematollahi, G. Asgari, R. Shokoohi, A. Ansari, M. R. Samarghandi, “Electrodegradation of 2,4-dichlorophenoxyacetic acid herbicide from aqueous solution using three-dimensional electrode reactor with G/β-PbO2 anode: Taguchi optimization and degradation mechanism determination,” RSC Advances, vol. 8, no. 69, pp. 39256-39268, Nov. 2018.
  • M. R. Samarghandi, A. Dargahi, A. Shabanloo, H. Z. Nasab, Y. Vaziri, A. Ansari, “Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater,” Arabian Journal of Chemistry, vol. 13, no. 8, pp. 6847-6864, Aug. 2020.
  • I. Ali, A. B. de Souza, S. D. Laet, K. V. Eyck, R. Dewil, “Anodic oxidation of sulfamethoxazole paired to cathodic hydrogen peroxide production,” Chemosphere, vol. 319, p. 137984, Apr. 2023.
  • H. Lin, J. Niu, S. Ding, L. Zhang, “Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes,” Water Research, vol. 46, no. 7, pp. 2281-2289, May 2012.
  • J. G. Kim, H. B. Kim, S. Lee, E. E. Kwon, K. Baek, “Mechanistic investigation into flow-through electrochemical oxidation of sulfanilamide for groundwater using a graphite anode,” Chemosphere, vol. 307, p. 136106, Nov. 2022.
  • H. Lin, J. Niu, J. Xu, Y. Li, Y. Pan, “Electrochemical mineralization of sulfamethoxazole by Ti/SnO 2-Sb/Ce-PbO2 anode: Kinetics, reaction pathways, and energy cost evolution,” Electrochimica Acta, vol. 97, pp. 167-174, May 2013.
  • D. Zhi, J. Zhang, J. Wang, L. Luo, Y. Zhou, Y. Zhou, “Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti4O7 and Ti/RuO2–IrO2 anodes,” Journal of Environmental Management, vol. 265, p. 110571, Jul. 2020.
  • T. S. Chen, Y. M. Kuo, J. L. Chen, K. L. Huang, “Anodic degradation of ofloxacin on a boron-doped diamond electrode,” International Journal of Electrochemical Science, vol. 8, no. 6, pp. 7625-7633, Jun. 2013.
  • Y. Wang, C. Shen, M. Zhang, B. T. Zhang, Y. G. Yu, “The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: Influencing factors, reaction pathways and energy demand,” Chemical Engineering Journal, vol. 296, pp. 79-89, Jul. 2016.
  • K. Çobanoğlu, N. Değermenci, “Comparison of reactive azo dye removal with UV/H2O2, UV/S2O82− and UV/HSO5− processes in aqueous solutions,” Environmental Monitoring and Assessment, vol. 194, no. 4, p. 302, Apr. 2022.
  • N. Oturan, J. Wu, H. Zhang, V. K. Sharma, M. A. Oturan, “Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: Effect of electrode materials,” Applied Catalysis B: Environmental, vol. 140-141, pp. 92-97, Aug. 2013.
  • M. R. Samarghandi, D. Nemattollahi, G. Asgari, R. Shokoohi, A. Ansari, A. Dargahi, “Electrochemical process for 2,4-D herbicide removal from aqueous solutions using stainless steel 316 and graphite Anodes: optimization using response surface methodology,” Separation Science and Technology, vol. 54, no. 4, pp. 478-493, Mar. 2019.
  • T. Muddemann, R. Neuber, D. Haupt, T. Graßl, M. Issa, F. Bienen, M. Enstrup, J. Möller, T. Matthée, M. Sievers, U. Kunz, “Improving the treatment efficiency and lowering the operating costs of electrochemical advanced oxidation processes,” Processes, vol. 9, no. 9, p. 1482, Sep. 2021.
  • A. Pieczyńska, T. Ossowski, R. Bogdanowicz, E. Siedlecka, “Electrochemical degradation of textile dyes in a flow reactor: effect of operating conditions and dyes chemical structure,” International Journal of Environmental Science and Technology, vol. 16, no. 2, pp. 929-942, Feb. 2019.
  • A. Fabiańska, A. Białk-Bielińska, P. Stepnowski, S. Stolte, E. M. Siedlecka, “Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation,” Journal of Hazardous Materials, vol. 280, pp. 579-587, Sep. 2014.
  • J. Cai, M. Zhou, Y. Pan, X. Lu, “Degradation of 2,4-dichlorophenoxyacetic acid by anodic oxidation and electro-Fenton using BDD anode: Influencing factors and mechanism,” Separation and Purification Technology, vol. 230, p. 115867, Jan. 2020.
  • S. Vasilie, F. Manea, A. Baciu, A. Pop, “Dual use of boron-doped diamond electrode in antibiotics-containing water treatment and process control,” Process Safety and Environmental Protection, vol. 117, pp. 446-453, Jul. 2018.
  • P. V. Nidheesh, A. Kumar, D. Syam Babu, J. Scaria, M. Suresh Kumar, “Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation,” Chemosphere, vol. 251, p. 126437, Jul. 2020.
  • F. C. Moreira, R. A. R. Boaventura, E. Brillas, V. J. P. Vilar, “Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters,” Applied Catalysis B: Environmental, vol. 202, pp. 217-261, Mar. 2017.

Investigation of Caffeine Degradation by Anodic Oxidation Using Boron-Doped Diamond Electrode

Year 2024, , 742 - 755, 31.08.2024
https://doi.org/10.16984/saufenbilder.1404885

Abstract

In this study, the purification of caffeine by electrochemical oxidation, one of the advanced oxidation processes, was systematically investigated. A boron-doped diamond electrode was used as the anode, which has a high potential for the production of large amounts of hydroxyl radicals. The effects of applied current density, initial pH, supporting electrolyte concentration, cathode type, anode-cathode distance, and initial caffeine concentration were evaluated. The results showed that the electrochemical degradation rates of caffeine follow pseudo-first-order kinetics, with rate constants ranging from 0.0154 to 0.0496 min-1 depending on the operating parameters. The applied current density and the electrolysis time proved to be the most important parameters influencing both caffeine degradation and energy consumption. However, varying the initial caffeine concentration and the concentration of the supporting electrolyte also influenced the caffeine degradation rates. Changing the anode-cathode distance and the type of cathode has no effect on the rate of caffeine degradation, but it does have an effect on energy consumption. A current density of 20 mA cm-2, a supporting electrolyte concentration of 50 mM K2SO4, an anode-cathode distance of 2 mm, a cathode type of stainless steel, and an initial solution pH of 3 were found to be optimal values for the degradation of a solution containing 25 mg L-1 caffeine in 45 minutes using a boron-doped diamond anode. Finally, it was found that the pH value of the solution tended to increase during electrolysis.

References

  • M. Ghosh, K. Manoli, X. Shen, J. Wang, A. K. Ray, “Solar photocatalytic degradation of caffeine with titanium dioxide and zinc oxide nanoparticles,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 377, pp. 1-7, May 2019.
  • L. Cizmas, V. K. Sharma, C. M. Gray, T. J. McDonald, “Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk,” Environmental Chemistry Letters, vol. 13, no. 4, pp. 381-394, Aug. 2015.
  • S. W. da Silva, E. M. O. Navarro, M. A. S. Rodrigues, A. M. Bernardes, V. Pérez-Herranz, “Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin,” Journal of Electroanalytical Chemistry, vol. 832, pp. 112-120, Jan. 2019.
  • T. S. Oliveira, M. Murphy, N. Mendola, V. Wong, D. Carlson, L. Waring, “Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS,” Science of the Total Environment, vol. 518-519, pp. 459-478, Jun. 2015.
  • A. Pal, K. Y. H. Gin, A. Y. C. Lin, M. Reinhard, “Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects,” Science of the Total Environment, vol. 408, no. 24, pp. 6062-6069, Nov. 2010.
  • L. Guardabassi, A. Petersen, J. E. Olsen, A. Dalsgaard, “Antibiotic resistance in Acinetobacter spp. isolated from sewers receiving waste effluent from a hospital and a pharmaceutical plant,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3499-3502, Sep. 1998.
  • A. Rajkamal, H. Kim, “Theoretical verification on adsorptive removal of caffeine by carbon and nitrogen-based surfaces: Role of charge transfer, π electron occupancy, and temperature,” Chemosphere, vol. 339, p. 139667, Oct. 2023.
  • M. A. Heckman, J. Weil, E. G. de Mejia, “Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters,” Journal of Food Science, vol. 75, no. 3, pp. 77-87, Apr. 2010.
  • T. H. Pham, N. M. Viet, P. T. T. Hoai, N. H. Tung, H. M. Tran, M. G. Mapari, T. Kim, “Synthesis of solar-driven Cu-doped graphitic carbon nitride photocatalyst for enhanced removal of caffeine in wastewater,” Environmental Research, vol. 233, p. 116483, Sep. 2023.
  • S. Mayson, I. D. Williams, “Applying a circular economy approach to valorize spent coffee grounds,” Resources Conservation and Recycling, vol. 172, p. 105659, Sep. 2021.
  • M. Fernández, M. Fernández, A. Laca, A. Laca, M. Díaz, “Seasonal occurrence and removal of pharmaceutical products in municipal wastewaters,” Journal of Environmental Chemical Engineering, vol. 2, no. 1, pp. 495-502, Mar. 2014.
  • J. Vymazal, T. D. Březinová, M. Koželuh, L. Kule, “Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic-the first year of monitoring,” Ecological Engineering, vol. 98, pp. 354-364, Jan. 2017.
  • Y. Picó, R. Alvarez-Ruiz, A. H. Alfarhan, M. A. El-Sheikh, H. O. Alshahrani, D. Barceló, “Pharmaceuticals, pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network (Saudi Arabia) and its shallow lakes,” Science of The Total Environment, vol. 701, p. 135021, Jan. 2020.
  • M. Ashfaq, Y. Li, M. S. U. Rehman, M. Zubair, G. Mustafa, M. F. Nazar, C. P. Yu, Q. Sun, “Occurrence, spatial variation and risk assessment of pharmaceuticals and personal care products in urban wastewater, canal surface water, and their sediments: A case study of Lahore, Pakistan,” Science of the Total Environment, vol. 688, pp. 653-663, Oct. 2019.
  • L. Bo, L. Feng, J. Fu, X. Li, P. Li, Y. Zhang, “The fate of typical pharmaceuticals in wastewater treatment plants of Xi’an city in China,” Journal of Environmental Chemical Engineering, vol. 3, no. 3, pp. 2203-2211, Sep. 2015.
  • Z. Ayman, M. Işik, “Pharmaceutically active compounds in water, Aksaray, Turkey,” Clean-Soil Air Water, vol. 43, no. 10, pp. 1381-1388, Oct. 2015.
  • O. Hillebrand, K. Nödler, T. Licha, M. Sauter, T. Geyer, “Caffeine as an indicator for the quantification of untreated wastewater in karst systems,” Water Research, vol. 46, no. 2, pp. 395-402, Feb. 2012.
  • F. Comeau, C. Surette, G. L. Brun, R. Losier, “The occurrence of acidic drugs and caffeine in sewage effluents and receiving waters from three coastal watersheds in Atlantic Canada,” Science of the Total Environment, vol. 396, no. 2-3, pp. 132-146, Jun. 2008.
  • H. B. Quesada, T. P. de Araújo, L. F. Cusioli, M. A. S. D. de Barros, R. G. Gomes, R. Bergamasco, “Caffeine removal by chitosan/activated carbon composite beads: Adsorption in tap water and synthetic hospital wastewater,” Chemical Engineering Research and Design, vol. 184, pp. 1-12, Aug. 2022.
  • J. Tejedor, R. Álvarez-Briceño, V. H. Guerrero, C. A. Villamar-Ayala, “Removal of caffeine using agro-industrial residues in fixed-bed columns: Improving the adsorption capacity and efficiency by selecting adequate physical and operational parameters,” Journal of Water Process Engineering, vol. 53, p. 103778, Jul. 2023.
  • K. K. Beltrame, A. L. Cazetta, P. S. C. de Souza, L. Spessato, T. L. Silva, V. C. Almeida, “Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves,” Ecotoxicology and Environmental Safety, vol. 147, pp. 64-71, Jan. 2018.
  • A. Moghaddasfar, M. Darbandi, Z. A. Li, “Mesoporous cobalt oxide nanoparticles synthesized by a sonochemical method in the presence of a deep eutectic solvent for oxidative sonophotocatalytic decomposition of caffeine,” Journal of Water Process Engineering, vol. 54, p. 104056, Aug. 2023.
  • S. Cheng, X. Zhang, X. Yang, C. Shang, W. Song, J. Fang, Y. Pan, “The Multiple Role of Bromide Ion in PPCPs Degradation under UV/Chlorine Treatment,” Environmental Science and Technology, vol. 52, no. 4, pp. 1806-1816, Feb. 2018.
  • F. S. Souza, L. A. Féris, “Degradation of caffeine by advanced oxidative processes: O3 and O3/UV,” Ozone: Science and Engineering, vol. 37, no. 4, pp. 379-384, Jan. 2015.
  • K. Guo, Z. Wu, S. Yan, B. Yao, W. Song, Z. Hua, X. Zhang, X. Kong, X. Li, J. Fong, “Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements,” Water Research, vol. 147, pp. 184-194, Dec. 2018.
  • N. Tran, P. Drogui, L. Nguyen, S. K. Brar, “Optimization of sono-electrochemical oxidation of ibuprofen in wastewater,” Journal of Environmental Chemical Engineering, vol. 3, no. 4, pp. 2637-2646, Dec. 2015.
  • R. J. A. Felisardo, E. Brillas, E. Bezerra Cavalcanti, S. Garcia-Segura, “Revealing degradation of organic constituents of urine during the electrochemical oxidation of ciprofloxacin via boron-doped diamond anode,” Separation and Purification Technology, vol. 331, p. 125655, Mar. 2024.
  • H. Hai, X. Xing, S. Li, S. Xia, J. Xia, “Electrochemical oxidation of sulfamethoxazole in BDD anode system: Degradation kinetics, mechanisms and toxicity evaluation,” Science of The Total Environment, vol. 738, p. 139909, Oct. 2020.
  • G. D. Değermenci, “Removal of reactive azo dye using platinum-coated titanium electrodes with the electro-oxidation process,” Desalination and Water Treatment, vol. 218, pp. 436-443, Apr. 2021.
  • B. A. Fil, S. Günaslan, “Treatment of Slaughterhouse Wastewaters with Ti/IrO2/RuO2 Anode and Investigation of Energy Consumption,” Arabian Journal for Science and Engineering, vol. 48, no. 1, pp. 457-466, Jan. 2023.
  • E. Brillas, A. Thiam, S. Garcia-Segura, “Incineration of acidic aqueous solutions of dopamine by electrochemical advanced oxidation processes with Pt and BDD anodes,” Journal of Electroanalytical Chemistry, vol. 775, pp. 189-197, Aug. 2016.
  • A. Kapałka, G. Fóti, C. Comninellis, “The importance of electrode material in environmental electrochemistry. Formation and reactivity of free hydroxyl radicals on boron-doped diamond electrodes,” Electrochimica Acta, vol. 54, no. 7, pp. 2018-2023, Feb. 2009.
  • B. Boye, E. Brillas, B. Marselli, P. A. Michaud, C. Comninellis, M. M. Dieng, “Electrochemical decontamination of waters by advanced oxidation processes (AOPS): Case of the mineralization of 2,4,5-T on BDD electrode,” Bulletin of the Chemical Society of Ethiopia, vol. 18, no. 2, pp. 205-214, Dec. 2004.
  • J. E. L. Santos, D. R. da Silva, C. A. Martínez-Huitle, E. V. dos Santos, M. A. Quiroz, “Cathodic hydrogen production by simultaneous oxidation of methyl red and 2,4-dichlorophenoxyacetate aqueous solutions using Pb/PbO2, Ti/Sb-doped SnO2 and Si/BDD anodes. Part 1: Electrochemical oxidation,” RSC Advances, vol. 10, no. 62, pp. 37695-37706, Oct. 2020.
  • B. Marselli, J. Garcia-Gomez, P.-A. Michaud, M. A. Rodrigo, C. Comninellis, “Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes,” Journal ofThe Electrochemical Society, vol. 150, no. 3, pp. 79-83, Feb. 2003.
  • G. Li, S. Zhou, Z. Shi, X. Meng, L. Li, B. Liu, “Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: mechanisms, kinetics and pathways,” Environmental Science and Pollution Research, vol. 26, no. 17, pp. 17740-17750, Jun. 2019.
  • S. Cho, C. Kim, I. Hwang, “Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER),” Chemosphere, vol. 259, p. 127382, Nov. 2020.
  • E. GilPavas, P. Arbeláez-Castaño, J. Medina, D. A. Acosta, “Combined electrocoagulation and electro-oxidation of industrial textile wastewater treatment in a continuous multi-stage reactor,” Water Science and Technology, vol. 76, no. 9, pp. 2515-2525, Nov. 2017.
  • N. Flores, I. Sirés, R. M. Rodríguez, F. Centellas, P. L. Cabot, J. A. Garrido, E. Brillas “Removal of 4-hydroxyphenylacetic acid from aqueous medium by electrochemical oxidation with a BDD anode: Mineralization, kinetics and oxidation products,” Journal of Electroanalytical Chemistry, vol. 793, pp. 58-65, May 2017.
  • E. B. Cavalcanti, S. Garcia-Segura, F. Centellas, E. Brillas, “Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: Degradation kinetics and oxidation products,” Water Research, vol. 47, no. 5, pp. 1803-1815, Apr. 2013.
  • M. Panizza, G. Cerisola, “Application of diamond electrodes to electrochemical processes,” Electrochimica Acta, vol. 51, no. 2, pp. 191-199, Oct. 2005.
  • I. Sirés, E. Brillas, M. A. Oturan, M. A. Rodrigo, M. Panizza, “Electrochemical advanced oxidation processes: Today and tomorrow. A review,” Environmental Science and Pollution Research, vol. 21, no. 14, pp. 8336-8367, Apr. 2014.
  • S. Kul, R. Boncukcuoğlu, F. Ekmekyapar Torun, Z. Reçber, O. Sözüdoğru, E. Aladağ, “Investigation of the Treatment of Olive Mill Wastewater by Electrooxidation,” Water Air Soil and Pollution, vol. 233, no. 10, p. 421, Oct. 2022.
  • A. Dargahi, D. Nematollahi, G. Asgari, R. Shokoohi, A. Ansari, M. R. Samarghandi, “Electrodegradation of 2,4-dichlorophenoxyacetic acid herbicide from aqueous solution using three-dimensional electrode reactor with G/β-PbO2 anode: Taguchi optimization and degradation mechanism determination,” RSC Advances, vol. 8, no. 69, pp. 39256-39268, Nov. 2018.
  • M. R. Samarghandi, A. Dargahi, A. Shabanloo, H. Z. Nasab, Y. Vaziri, A. Ansari, “Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater,” Arabian Journal of Chemistry, vol. 13, no. 8, pp. 6847-6864, Aug. 2020.
  • I. Ali, A. B. de Souza, S. D. Laet, K. V. Eyck, R. Dewil, “Anodic oxidation of sulfamethoxazole paired to cathodic hydrogen peroxide production,” Chemosphere, vol. 319, p. 137984, Apr. 2023.
  • H. Lin, J. Niu, S. Ding, L. Zhang, “Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes,” Water Research, vol. 46, no. 7, pp. 2281-2289, May 2012.
  • J. G. Kim, H. B. Kim, S. Lee, E. E. Kwon, K. Baek, “Mechanistic investigation into flow-through electrochemical oxidation of sulfanilamide for groundwater using a graphite anode,” Chemosphere, vol. 307, p. 136106, Nov. 2022.
  • H. Lin, J. Niu, J. Xu, Y. Li, Y. Pan, “Electrochemical mineralization of sulfamethoxazole by Ti/SnO 2-Sb/Ce-PbO2 anode: Kinetics, reaction pathways, and energy cost evolution,” Electrochimica Acta, vol. 97, pp. 167-174, May 2013.
  • D. Zhi, J. Zhang, J. Wang, L. Luo, Y. Zhou, Y. Zhou, “Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti4O7 and Ti/RuO2–IrO2 anodes,” Journal of Environmental Management, vol. 265, p. 110571, Jul. 2020.
  • T. S. Chen, Y. M. Kuo, J. L. Chen, K. L. Huang, “Anodic degradation of ofloxacin on a boron-doped diamond electrode,” International Journal of Electrochemical Science, vol. 8, no. 6, pp. 7625-7633, Jun. 2013.
  • Y. Wang, C. Shen, M. Zhang, B. T. Zhang, Y. G. Yu, “The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: Influencing factors, reaction pathways and energy demand,” Chemical Engineering Journal, vol. 296, pp. 79-89, Jul. 2016.
  • K. Çobanoğlu, N. Değermenci, “Comparison of reactive azo dye removal with UV/H2O2, UV/S2O82− and UV/HSO5− processes in aqueous solutions,” Environmental Monitoring and Assessment, vol. 194, no. 4, p. 302, Apr. 2022.
  • N. Oturan, J. Wu, H. Zhang, V. K. Sharma, M. A. Oturan, “Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: Effect of electrode materials,” Applied Catalysis B: Environmental, vol. 140-141, pp. 92-97, Aug. 2013.
  • M. R. Samarghandi, D. Nemattollahi, G. Asgari, R. Shokoohi, A. Ansari, A. Dargahi, “Electrochemical process for 2,4-D herbicide removal from aqueous solutions using stainless steel 316 and graphite Anodes: optimization using response surface methodology,” Separation Science and Technology, vol. 54, no. 4, pp. 478-493, Mar. 2019.
  • T. Muddemann, R. Neuber, D. Haupt, T. Graßl, M. Issa, F. Bienen, M. Enstrup, J. Möller, T. Matthée, M. Sievers, U. Kunz, “Improving the treatment efficiency and lowering the operating costs of electrochemical advanced oxidation processes,” Processes, vol. 9, no. 9, p. 1482, Sep. 2021.
  • A. Pieczyńska, T. Ossowski, R. Bogdanowicz, E. Siedlecka, “Electrochemical degradation of textile dyes in a flow reactor: effect of operating conditions and dyes chemical structure,” International Journal of Environmental Science and Technology, vol. 16, no. 2, pp. 929-942, Feb. 2019.
  • A. Fabiańska, A. Białk-Bielińska, P. Stepnowski, S. Stolte, E. M. Siedlecka, “Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation,” Journal of Hazardous Materials, vol. 280, pp. 579-587, Sep. 2014.
  • J. Cai, M. Zhou, Y. Pan, X. Lu, “Degradation of 2,4-dichlorophenoxyacetic acid by anodic oxidation and electro-Fenton using BDD anode: Influencing factors and mechanism,” Separation and Purification Technology, vol. 230, p. 115867, Jan. 2020.
  • S. Vasilie, F. Manea, A. Baciu, A. Pop, “Dual use of boron-doped diamond electrode in antibiotics-containing water treatment and process control,” Process Safety and Environmental Protection, vol. 117, pp. 446-453, Jul. 2018.
  • P. V. Nidheesh, A. Kumar, D. Syam Babu, J. Scaria, M. Suresh Kumar, “Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation,” Chemosphere, vol. 251, p. 126437, Jul. 2020.
  • F. C. Moreira, R. A. R. Boaventura, E. Brillas, V. J. P. Vilar, “Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters,” Applied Catalysis B: Environmental, vol. 202, pp. 217-261, Mar. 2017.
There are 62 citations in total.

Details

Primary Language English
Subjects Environmental Engineering (Other)
Journal Section Research Articles
Authors

Gökçe Didar Değermenci 0000-0002-4533-9273

Early Pub Date August 1, 2024
Publication Date August 31, 2024
Submission Date December 14, 2023
Acceptance Date June 4, 2024
Published in Issue Year 2024

Cite

APA Değermenci, G. D. (2024). Investigation of Caffeine Degradation by Anodic Oxidation Using Boron-Doped Diamond Electrode. Sakarya University Journal of Science, 28(4), 742-755. https://doi.org/10.16984/saufenbilder.1404885
AMA Değermenci GD. Investigation of Caffeine Degradation by Anodic Oxidation Using Boron-Doped Diamond Electrode. SAUJS. August 2024;28(4):742-755. doi:10.16984/saufenbilder.1404885
Chicago Değermenci, Gökçe Didar. “Investigation of Caffeine Degradation by Anodic Oxidation Using Boron-Doped Diamond Electrode”. Sakarya University Journal of Science 28, no. 4 (August 2024): 742-55. https://doi.org/10.16984/saufenbilder.1404885.
EndNote Değermenci GD (August 1, 2024) Investigation of Caffeine Degradation by Anodic Oxidation Using Boron-Doped Diamond Electrode. Sakarya University Journal of Science 28 4 742–755.
IEEE G. D. Değermenci, “Investigation of Caffeine Degradation by Anodic Oxidation Using Boron-Doped Diamond Electrode”, SAUJS, vol. 28, no. 4, pp. 742–755, 2024, doi: 10.16984/saufenbilder.1404885.
ISNAD Değermenci, Gökçe Didar. “Investigation of Caffeine Degradation by Anodic Oxidation Using Boron-Doped Diamond Electrode”. Sakarya University Journal of Science 28/4 (August 2024), 742-755. https://doi.org/10.16984/saufenbilder.1404885.
JAMA Değermenci GD. Investigation of Caffeine Degradation by Anodic Oxidation Using Boron-Doped Diamond Electrode. SAUJS. 2024;28:742–755.
MLA Değermenci, Gökçe Didar. “Investigation of Caffeine Degradation by Anodic Oxidation Using Boron-Doped Diamond Electrode”. Sakarya University Journal of Science, vol. 28, no. 4, 2024, pp. 742-55, doi:10.16984/saufenbilder.1404885.
Vancouver Değermenci GD. Investigation of Caffeine Degradation by Anodic Oxidation Using Boron-Doped Diamond Electrode. SAUJS. 2024;28(4):742-55.