Research Article
BibTex RIS Cite

Investigation of Alkali Activated Ferrochromium Slag Composites Including Waste Marble Powder

Year 2024, , 654 - 667, 30.06.2024
https://doi.org/10.16984/saufenbilder.1407329

Abstract

This study investigates the potential of alkali-activated ferrochrome slag (AAFS) as a sustainable building material in combination with waste marble powder. Na2SiO3 and various molarity levels of NaOH, were evaluated to create AAFS. The study encompasses a comprehensive analysis, including SEM, XRD, and XRF, to understand the microstructure and chemical composition of the resulting composites. Consistency tests showed that an increase in molarity of the alkali activator decreased setting times, indicating that higher NaOH concentrations led to the earlier setting of the samples. XRD analysis revealed the presence of forsterite, spinel, and other crystal phases in the alkali-activated dough samples, suggesting incomplete activation of the ferrochrome slag. Higher molarity values improved compressive strength, while the inclusion of more waste marble powder reduced due to increased porosity. Additional tests, such as density measurements, capillarity experiments, and ultrasonic pulse velocity tests, provided valuable insights into the material's physical and mechanical properties. The results showed that temperature, molarity, and presence of waste marble influenced these properties. The compressive strength achievement of approximately 15 MPa at a modest temperature of 60°C during alkaline activation expresses the exceptional performance of the mixture, with marble powder utilized at the highest proportion (30%). This not only represents an energy-efficient solution but also showcases a sustainable approach that efficiently repurposes waste materials. As a result, this study demonstrates that AAFS, when properly activated and blended with waste marble powder, can yield alkali-activated composites with promising compressive strength and potential as a sustainable building material.

References

  • [1] J. Newman, B. S. Choo, "Advanced Concrete Technology: Constituent Materials" Butterworth-Heinemann, 2003.
  • [2] Ş. Erdoğdu, Ş. Kurbetçi, “Betonun performansına sağladıkları etkinlik açısından kimyasal ve mineral katkı maddeleri”, Türkiye Mühendislik Haberleri, 426, 115-120, 2003.
  • [3] A. Dorum, Y. Koçak, B. Yılmaz, A. Uçar, “Yüksek Fırın Cürufunun Çimento Yüzey Özelliklerine ve Hidratasyona Etkileri”, DPÜ Fen Bilimleri Enstitüsü Dergisi, Sayı 19, pp., 47-58, 2009.
  • [4] M. Riekkola., Vanhanen, "Finnish expert report on best available techniques in ferrochromium production", Enviromental Institute Helsinki, pp. 1-50, 1999.
  • [5] J. Zelic, "Properties of concrete pavements prepared with ferrochromium slag as concrete aggregate", Cement and Concrete Research 35, 2340-2349, 2005.
  • [6] S. Yazıcıoğlu, T. Gönen, Ö. C. Çobanoğlu, “Elazığ Ferrokrom Cürufunun Betonun Basınç Dayanımı ve Çarpma Enerjisi Üzerine Etkisi”, Fırat Üniv. Fen ve Müh. Bil. Der. 17 (4), 681-686, 2005.
  • [7] A. Yılmaz, İ. Sütaş, “Ferrokrom Cürufunun Yol Temel Malzemesi Olarak Kullanımı.” Teknik Dergi, 19(93), 4455-4470, 2008.
  • [8] N. R. Rakhimova, R. Z. Rakhimov, “Toward clean cement technologies: a review on alkali-activated fly-ash cements incorporated with supplementary materials.” Journal of Non-Crystalline Solids, 509, 31-41, 2019.
  • [9] M. Saedi, K. Behfarnia, H. Soltanian, “The effect of the blaine fineness on the mechanical properties of the alkali-activated slag cement”. Journal of Building Engineering, 26, 100897, 2019.
  • [10] A. Fernández-Jiménez, A. Palomo, “Composition and microstructure of alkali activated fly ash binder: Effect of the activator”. Cement and concrete research, 35(10), 1984-1992, 2005.
  • [11] F. Pacheco-Torgal, J. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasit, “Handbook of alkali-activated cements, mortars and concretes”, Elsevier, 2014.
  • [12] Y. Kocak, S. Nas, “The effect of using fly ash on the strength and hydration characteristics of blended cements”. Construction and Building Materials, 73, 25-32, 2014.
  • [13] P. Rovnaník, I. Kusák, P. Bayer, P. Schmid, L. Fiala, “Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars”. Cement and Concrete Research, 118, 84-91, 2019.
  • [14] M. Keskinkılınç Koç, “Alkali aktive edilmiş harç üretiminde krom cürufu ve atık mermer tozunun değerlendirilmesi”, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, 2019.
  • [15] A. Yılmaz, “Antalya Ferrokrom İşletmesinin Elektrik-Ark Fırını Cüruflarının ve Baca Tozu Atıklarının Asfalt Betonunda Kullanılabilirliğinin Araştırılması”, Yüksek Lisans Tezi, Akdeniz Üniversitesi, Antalya, 2002.
  • [16] M. M. Yadollahi, S. Varolgüneş, F. İşsever, “Na2O, silika modülü, su/bağlayıcı oranı ve yaşlanmanın cüruf tabanlı geopolimerlerin basınç mukavemetinde olan etkileri”. Türk Doğa ve Fen Dergisi, 6(2), 26-31, 2017.
  • [17] A. Şentürk, L. Gündüz, Y. İ. Tosun, A. Sarıışık, “Mermer teknolojisi”. Süleyman Demirel Üniversitesi Mühendislik Mimarlık Fakültesi Maden Mühendisliği, Isparta, 1996.
  • [18] K. E Alyamaç, R. İnce, “Study on the usability of waste marble mud in self-compacting concrete as a powder material”. In Proceedings of TÇMB 3rd International Symposium, Istanbul, Turkey, pp. 821-832, 2007.
  • [19] B. Demirel, “The effect of the using waste marble dust as fine sand on the mechanical properties of the concrete”. Int. J. Phys. Sci. 5, 1372-1380, 2010.
  • [20] O. Keleştemur, S. Yildiz, B. Gökçer, E. Arici, “Statistical analysis for freeze–thaw resistance of cement mortars containing marble dust and glass fiber”. Materials & Design, 60, 548-555, 2014.
  • [21] K. E. Alyamac, A. B. Aydin, “Concrete properties containing fine aggregate marble powder”. KSCE Journal of Civil Engineering, 19, 2208-2216, 2015.
  • [22] Ö. Can, “Ferrokrom curufunun kerpicin mühendislik özelliklerine etkisi”, Selçuk-Teknik Dergisi, [S.l.], Cilt 7, Sayı:2 pp. 175-185, 2008.
  • [23] M. Yılmaz, B. V. Kök, “Ferrokrom cürufu kullanımının bitümlü sıcak karışımların mekanik özelliklerine etkisi”, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(3), 186-194, 2008.
  • [24] A. Yılmaz, M. Karaşahin, “Mechanical properties of ferrochromium slag in granular layers of flexible pavements”. Materials and structures, 43(3), 309-317, 2010.
  • [25] O. Gencel, F. Koksal, C. Ozel, W. Brostow, “Combined effects of fly ash and waste ferrochromium on properties of concrete”. Construction and Building Materials, 29, 633-640, 2012.
  • [26] O. Gencel, M. Sutcu, E. Erdogmus, V. Koc, V. V. Cay, M. S. Gok, “Properties of bricks with waste ferrochromium slag and zeolite”. Journal of Cleaner Production, 59, 111-119, 2013.
  • [27] F. Kantarcı, “Elazığ ferrokrom cürufundan alkali aktivasyon metoduyla üretilen geopolimer çimentolu betonların yangın dayanımının araştırılması”, Yüksek Lisans Tezi, İnönü Üniversitesi, Malatya, 2013.
  • [28] İ. Türkmen, M. M. Maraş, M. B. Karakoç, R. Demi̇rboğa, F. Kantarci, “Fire resistance of geopolymer concrete produced from Ferrochrome slag by alkali activation method”. In 2013 International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, pp. 58-63, 2013.
  • [29] M. M. Maraş, “Elazığ Ferrokrom cürufundan üretilen geopolimer çimentolu betonların sülfat direncinin araştırılması”, Yüksek Lisans Tezi, İnönü Üniversitesi, Malatya, 2013.
  • [30] O. Mahmut, M. Emiroğlu, “Elazığ Ferrokrom Cürufunun Alkali Aktive Edilmiş Harç Üretiminde Kullanım Potansiyelinin Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 23-34, 2016.
  • [31] C. Elibol, O. Sengul, “Effects of Activator Properties and Ferrochrome Slag Aggregates on the Properties of alkali-activated Blast Furnace Slag Mortars”, Arabian Journal for Science and Engineering, 41(4), pp. 1561–1571, 2016.
  • [32] S. Shin, G. Goh, C. Lee, “Predictions of compressive strength of GPC blended with GGBFS developed at varying temperatures”. Construction and Building Materials, 206, 1-9, 2019.
  • [33] Y. D. Adufu, S. O. Sore, P. Nshimiyimana, “Effect of curing conditions on physico-mechanical properties of metakaolin-based geopolymer concrete containing calcium carbide residue”. MRS Advances 8, 591–595, 2023.
  • [34] R. G. Sertbakan, İ. İ. Atabey, U. Durak, S. İlkentapar, O. Karahan, C. D. Atiş, “Alkali ile Aktive Edilmiş Cüruf ve Uçucu Kül Harçlarına Yüksek Sıcaklık Sonrası Hava Kürünün Etkisi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10 (2022) 114-126.
  • [35] Z. B. Öztürk, İ. İ. “Atabey, Mechanical and microstructural characteristics of geopolymer mortars at high temperatures produced with ceramic sanitaryware waste”. Ceramics International, 48(9), 12932-12944, 2022.
  • [36] X. Liu, C. Shi, Y. Yao, “Strengthening Mechanism of Geopolymer Lightweight Cellular Concrete Reinforced with Glass Fibers”. Arab J Sci Eng, 2024.
  • [37] İ. İ. Atabey, O. Karahan, C. Bilim, C. D. Atiş, “The influence of activator type and quantity on the transport properties of class F fly ash geopolymer”. Construction and Building Materials, 264, 120268, 2020.
  • [38] S. Song, D. Sohn, Jennings, H.M. et al. “Hydration of alkali-activated ground granulated blast furnace slag”. Journal of Materials Science 35, 249–257, 2000.
  • [39] S. Pu, Z. Zhu, W. Song, W. Huo, J. Zhang, “Mechanical and microscopic properties of fly ash phosphoric acid-based geopolymer paste: A comprehensive study”. Construction and Building Materials, 299, 123947, 2021.
  • [40] X. Jiang, R. Xiao, Y. Ma, M. Zhang, Y. Bai, B. Huang, “Influence of waste glass powder on the physico-mechanical properties and microstructures of fly ash-based geopolymer paste after exposure to high temperatures”. Construction and Building Materials, 262, 120579, 2020.
  • [41] N. Bheel, P. Awoyera, I. A. Shar, S. A. Abbasi, S. H. Khahro, A. K. Prakash, “Synergic effect of millet husk ash and wheat straw ash on the fresh and hardened properties of Metakaolin-based self-compacting geopolymer concrete”. Case Studies in Construction Materials, 15, e00729, 2021.
  • [42] S. Çelikten, İ. İ. Atabey, “Farklı Silis ve Alümin Kaynaklarının Atik Mermer Tozu Esaslı Alkali ile Aktive Edilmiş Harçların Özelliklerine Etkisi”. Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 396-405, 2021.
  • [43] İ. Küçük, “X-Işını Floresans Spektroskopisi (XRF) Deney Föyü”, Bursa Teknik Üniversitesi 2017.
  • [44] Ü. Yurt, F. Bekar, “Comparative study of hazelnut-shell biomass ash and metakaolin to improve the performance of alkali-activated concrete: A sustainable greener alternative”, Construction and Building Materials, 320, 126230, 2022.
  • [45] M. Şahmaran, V.C. Li, “Influence of microcracking on water absorption and sorptivity of ECC.” Materials and structures, 42, 593-603, 2009.
  • [46] A. Yazıcı, M. Kaya, “Ferrokrom Curufunun Karakterizasyonu”, F.Ü. Fen ve Mühendislik Bilimleri Dergisi, 15(4), 539-548, 2003.
  • [47] H. Vapur, T. O. P. Soner, A. Teymen, M. Türkmenoğlu, “Elazığ Ferrokrom Tesisi Cüruflarının Agrega Özelliklerinin Arastırılması”. Çukurova Üniversitesi Mühendislik- Mimarlık Fakültesi Dergisi, 28(1), 77-88, 2013.
  • [48] S. Yazıcıoglu, E. Arıcı, T. Gönen, “Elazig errokrom Cürufunun Betonda Karbonatlasmaya Etkisi”, 5. Ulusal Beton Kongresi Betonun Dayanikliligi (Durabilite), Insaat Mühendisleri Odasi Istanbul Subesi, 2003.
  • [49] B. Demirel, K. E. Alyamaç, “Waste marble powder/dust”. In Waste and Supplementary Cementitious Materials in Concrete, pp.181-197, Woodhead Publishing, 2018.
Year 2024, , 654 - 667, 30.06.2024
https://doi.org/10.16984/saufenbilder.1407329

Abstract

References

  • [1] J. Newman, B. S. Choo, "Advanced Concrete Technology: Constituent Materials" Butterworth-Heinemann, 2003.
  • [2] Ş. Erdoğdu, Ş. Kurbetçi, “Betonun performansına sağladıkları etkinlik açısından kimyasal ve mineral katkı maddeleri”, Türkiye Mühendislik Haberleri, 426, 115-120, 2003.
  • [3] A. Dorum, Y. Koçak, B. Yılmaz, A. Uçar, “Yüksek Fırın Cürufunun Çimento Yüzey Özelliklerine ve Hidratasyona Etkileri”, DPÜ Fen Bilimleri Enstitüsü Dergisi, Sayı 19, pp., 47-58, 2009.
  • [4] M. Riekkola., Vanhanen, "Finnish expert report on best available techniques in ferrochromium production", Enviromental Institute Helsinki, pp. 1-50, 1999.
  • [5] J. Zelic, "Properties of concrete pavements prepared with ferrochromium slag as concrete aggregate", Cement and Concrete Research 35, 2340-2349, 2005.
  • [6] S. Yazıcıoğlu, T. Gönen, Ö. C. Çobanoğlu, “Elazığ Ferrokrom Cürufunun Betonun Basınç Dayanımı ve Çarpma Enerjisi Üzerine Etkisi”, Fırat Üniv. Fen ve Müh. Bil. Der. 17 (4), 681-686, 2005.
  • [7] A. Yılmaz, İ. Sütaş, “Ferrokrom Cürufunun Yol Temel Malzemesi Olarak Kullanımı.” Teknik Dergi, 19(93), 4455-4470, 2008.
  • [8] N. R. Rakhimova, R. Z. Rakhimov, “Toward clean cement technologies: a review on alkali-activated fly-ash cements incorporated with supplementary materials.” Journal of Non-Crystalline Solids, 509, 31-41, 2019.
  • [9] M. Saedi, K. Behfarnia, H. Soltanian, “The effect of the blaine fineness on the mechanical properties of the alkali-activated slag cement”. Journal of Building Engineering, 26, 100897, 2019.
  • [10] A. Fernández-Jiménez, A. Palomo, “Composition and microstructure of alkali activated fly ash binder: Effect of the activator”. Cement and concrete research, 35(10), 1984-1992, 2005.
  • [11] F. Pacheco-Torgal, J. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasit, “Handbook of alkali-activated cements, mortars and concretes”, Elsevier, 2014.
  • [12] Y. Kocak, S. Nas, “The effect of using fly ash on the strength and hydration characteristics of blended cements”. Construction and Building Materials, 73, 25-32, 2014.
  • [13] P. Rovnaník, I. Kusák, P. Bayer, P. Schmid, L. Fiala, “Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars”. Cement and Concrete Research, 118, 84-91, 2019.
  • [14] M. Keskinkılınç Koç, “Alkali aktive edilmiş harç üretiminde krom cürufu ve atık mermer tozunun değerlendirilmesi”, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, 2019.
  • [15] A. Yılmaz, “Antalya Ferrokrom İşletmesinin Elektrik-Ark Fırını Cüruflarının ve Baca Tozu Atıklarının Asfalt Betonunda Kullanılabilirliğinin Araştırılması”, Yüksek Lisans Tezi, Akdeniz Üniversitesi, Antalya, 2002.
  • [16] M. M. Yadollahi, S. Varolgüneş, F. İşsever, “Na2O, silika modülü, su/bağlayıcı oranı ve yaşlanmanın cüruf tabanlı geopolimerlerin basınç mukavemetinde olan etkileri”. Türk Doğa ve Fen Dergisi, 6(2), 26-31, 2017.
  • [17] A. Şentürk, L. Gündüz, Y. İ. Tosun, A. Sarıışık, “Mermer teknolojisi”. Süleyman Demirel Üniversitesi Mühendislik Mimarlık Fakültesi Maden Mühendisliği, Isparta, 1996.
  • [18] K. E Alyamaç, R. İnce, “Study on the usability of waste marble mud in self-compacting concrete as a powder material”. In Proceedings of TÇMB 3rd International Symposium, Istanbul, Turkey, pp. 821-832, 2007.
  • [19] B. Demirel, “The effect of the using waste marble dust as fine sand on the mechanical properties of the concrete”. Int. J. Phys. Sci. 5, 1372-1380, 2010.
  • [20] O. Keleştemur, S. Yildiz, B. Gökçer, E. Arici, “Statistical analysis for freeze–thaw resistance of cement mortars containing marble dust and glass fiber”. Materials & Design, 60, 548-555, 2014.
  • [21] K. E. Alyamac, A. B. Aydin, “Concrete properties containing fine aggregate marble powder”. KSCE Journal of Civil Engineering, 19, 2208-2216, 2015.
  • [22] Ö. Can, “Ferrokrom curufunun kerpicin mühendislik özelliklerine etkisi”, Selçuk-Teknik Dergisi, [S.l.], Cilt 7, Sayı:2 pp. 175-185, 2008.
  • [23] M. Yılmaz, B. V. Kök, “Ferrokrom cürufu kullanımının bitümlü sıcak karışımların mekanik özelliklerine etkisi”, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(3), 186-194, 2008.
  • [24] A. Yılmaz, M. Karaşahin, “Mechanical properties of ferrochromium slag in granular layers of flexible pavements”. Materials and structures, 43(3), 309-317, 2010.
  • [25] O. Gencel, F. Koksal, C. Ozel, W. Brostow, “Combined effects of fly ash and waste ferrochromium on properties of concrete”. Construction and Building Materials, 29, 633-640, 2012.
  • [26] O. Gencel, M. Sutcu, E. Erdogmus, V. Koc, V. V. Cay, M. S. Gok, “Properties of bricks with waste ferrochromium slag and zeolite”. Journal of Cleaner Production, 59, 111-119, 2013.
  • [27] F. Kantarcı, “Elazığ ferrokrom cürufundan alkali aktivasyon metoduyla üretilen geopolimer çimentolu betonların yangın dayanımının araştırılması”, Yüksek Lisans Tezi, İnönü Üniversitesi, Malatya, 2013.
  • [28] İ. Türkmen, M. M. Maraş, M. B. Karakoç, R. Demi̇rboğa, F. Kantarci, “Fire resistance of geopolymer concrete produced from Ferrochrome slag by alkali activation method”. In 2013 International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, pp. 58-63, 2013.
  • [29] M. M. Maraş, “Elazığ Ferrokrom cürufundan üretilen geopolimer çimentolu betonların sülfat direncinin araştırılması”, Yüksek Lisans Tezi, İnönü Üniversitesi, Malatya, 2013.
  • [30] O. Mahmut, M. Emiroğlu, “Elazığ Ferrokrom Cürufunun Alkali Aktive Edilmiş Harç Üretiminde Kullanım Potansiyelinin Araştırılması”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 23-34, 2016.
  • [31] C. Elibol, O. Sengul, “Effects of Activator Properties and Ferrochrome Slag Aggregates on the Properties of alkali-activated Blast Furnace Slag Mortars”, Arabian Journal for Science and Engineering, 41(4), pp. 1561–1571, 2016.
  • [32] S. Shin, G. Goh, C. Lee, “Predictions of compressive strength of GPC blended with GGBFS developed at varying temperatures”. Construction and Building Materials, 206, 1-9, 2019.
  • [33] Y. D. Adufu, S. O. Sore, P. Nshimiyimana, “Effect of curing conditions on physico-mechanical properties of metakaolin-based geopolymer concrete containing calcium carbide residue”. MRS Advances 8, 591–595, 2023.
  • [34] R. G. Sertbakan, İ. İ. Atabey, U. Durak, S. İlkentapar, O. Karahan, C. D. Atiş, “Alkali ile Aktive Edilmiş Cüruf ve Uçucu Kül Harçlarına Yüksek Sıcaklık Sonrası Hava Kürünün Etkisi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10 (2022) 114-126.
  • [35] Z. B. Öztürk, İ. İ. “Atabey, Mechanical and microstructural characteristics of geopolymer mortars at high temperatures produced with ceramic sanitaryware waste”. Ceramics International, 48(9), 12932-12944, 2022.
  • [36] X. Liu, C. Shi, Y. Yao, “Strengthening Mechanism of Geopolymer Lightweight Cellular Concrete Reinforced with Glass Fibers”. Arab J Sci Eng, 2024.
  • [37] İ. İ. Atabey, O. Karahan, C. Bilim, C. D. Atiş, “The influence of activator type and quantity on the transport properties of class F fly ash geopolymer”. Construction and Building Materials, 264, 120268, 2020.
  • [38] S. Song, D. Sohn, Jennings, H.M. et al. “Hydration of alkali-activated ground granulated blast furnace slag”. Journal of Materials Science 35, 249–257, 2000.
  • [39] S. Pu, Z. Zhu, W. Song, W. Huo, J. Zhang, “Mechanical and microscopic properties of fly ash phosphoric acid-based geopolymer paste: A comprehensive study”. Construction and Building Materials, 299, 123947, 2021.
  • [40] X. Jiang, R. Xiao, Y. Ma, M. Zhang, Y. Bai, B. Huang, “Influence of waste glass powder on the physico-mechanical properties and microstructures of fly ash-based geopolymer paste after exposure to high temperatures”. Construction and Building Materials, 262, 120579, 2020.
  • [41] N. Bheel, P. Awoyera, I. A. Shar, S. A. Abbasi, S. H. Khahro, A. K. Prakash, “Synergic effect of millet husk ash and wheat straw ash on the fresh and hardened properties of Metakaolin-based self-compacting geopolymer concrete”. Case Studies in Construction Materials, 15, e00729, 2021.
  • [42] S. Çelikten, İ. İ. Atabey, “Farklı Silis ve Alümin Kaynaklarının Atik Mermer Tozu Esaslı Alkali ile Aktive Edilmiş Harçların Özelliklerine Etkisi”. Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 396-405, 2021.
  • [43] İ. Küçük, “X-Işını Floresans Spektroskopisi (XRF) Deney Föyü”, Bursa Teknik Üniversitesi 2017.
  • [44] Ü. Yurt, F. Bekar, “Comparative study of hazelnut-shell biomass ash and metakaolin to improve the performance of alkali-activated concrete: A sustainable greener alternative”, Construction and Building Materials, 320, 126230, 2022.
  • [45] M. Şahmaran, V.C. Li, “Influence of microcracking on water absorption and sorptivity of ECC.” Materials and structures, 42, 593-603, 2009.
  • [46] A. Yazıcı, M. Kaya, “Ferrokrom Curufunun Karakterizasyonu”, F.Ü. Fen ve Mühendislik Bilimleri Dergisi, 15(4), 539-548, 2003.
  • [47] H. Vapur, T. O. P. Soner, A. Teymen, M. Türkmenoğlu, “Elazığ Ferrokrom Tesisi Cüruflarının Agrega Özelliklerinin Arastırılması”. Çukurova Üniversitesi Mühendislik- Mimarlık Fakültesi Dergisi, 28(1), 77-88, 2013.
  • [48] S. Yazıcıoglu, E. Arıcı, T. Gönen, “Elazig errokrom Cürufunun Betonda Karbonatlasmaya Etkisi”, 5. Ulusal Beton Kongresi Betonun Dayanikliligi (Durabilite), Insaat Mühendisleri Odasi Istanbul Subesi, 2003.
  • [49] B. Demirel, K. E. Alyamaç, “Waste marble powder/dust”. In Waste and Supplementary Cementitious Materials in Concrete, pp.181-197, Woodhead Publishing, 2018.
There are 49 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Research Articles
Authors

Merve Koç Keskinkılınç 0009-0001-3434-8510

Servet Yıldız 0000-0003-0441-8044

Şule Sekin Eronat 0000-0003-3121-424X

Mehmet Emiroğlu 0000-0002-0214-4986

Early Pub Date June 14, 2024
Publication Date June 30, 2024
Submission Date December 20, 2023
Acceptance Date April 18, 2024
Published in Issue Year 2024

Cite

APA Koç Keskinkılınç, M., Yıldız, S., Sekin Eronat, Ş., Emiroğlu, M. (2024). Investigation of Alkali Activated Ferrochromium Slag Composites Including Waste Marble Powder. Sakarya University Journal of Science, 28(3), 654-667. https://doi.org/10.16984/saufenbilder.1407329
AMA Koç Keskinkılınç M, Yıldız S, Sekin Eronat Ş, Emiroğlu M. Investigation of Alkali Activated Ferrochromium Slag Composites Including Waste Marble Powder. SAUJS. June 2024;28(3):654-667. doi:10.16984/saufenbilder.1407329
Chicago Koç Keskinkılınç, Merve, Servet Yıldız, Şule Sekin Eronat, and Mehmet Emiroğlu. “Investigation of Alkali Activated Ferrochromium Slag Composites Including Waste Marble Powder”. Sakarya University Journal of Science 28, no. 3 (June 2024): 654-67. https://doi.org/10.16984/saufenbilder.1407329.
EndNote Koç Keskinkılınç M, Yıldız S, Sekin Eronat Ş, Emiroğlu M (June 1, 2024) Investigation of Alkali Activated Ferrochromium Slag Composites Including Waste Marble Powder. Sakarya University Journal of Science 28 3 654–667.
IEEE M. Koç Keskinkılınç, S. Yıldız, Ş. Sekin Eronat, and M. Emiroğlu, “Investigation of Alkali Activated Ferrochromium Slag Composites Including Waste Marble Powder”, SAUJS, vol. 28, no. 3, pp. 654–667, 2024, doi: 10.16984/saufenbilder.1407329.
ISNAD Koç Keskinkılınç, Merve et al. “Investigation of Alkali Activated Ferrochromium Slag Composites Including Waste Marble Powder”. Sakarya University Journal of Science 28/3 (June 2024), 654-667. https://doi.org/10.16984/saufenbilder.1407329.
JAMA Koç Keskinkılınç M, Yıldız S, Sekin Eronat Ş, Emiroğlu M. Investigation of Alkali Activated Ferrochromium Slag Composites Including Waste Marble Powder. SAUJS. 2024;28:654–667.
MLA Koç Keskinkılınç, Merve et al. “Investigation of Alkali Activated Ferrochromium Slag Composites Including Waste Marble Powder”. Sakarya University Journal of Science, vol. 28, no. 3, 2024, pp. 654-67, doi:10.16984/saufenbilder.1407329.
Vancouver Koç Keskinkılınç M, Yıldız S, Sekin Eronat Ş, Emiroğlu M. Investigation of Alkali Activated Ferrochromium Slag Composites Including Waste Marble Powder. SAUJS. 2024;28(3):654-67.