Review
BibTex RIS Cite
Year 2024, , 899 - 911, 31.08.2024
https://doi.org/10.16984/saufenbilder.1480488

Abstract

References

  • [1] E. Summary, “Partnerships and cooperation for water,” December 12, 2023.[Online].Available:https://www.unesco.org/reports/wwdr/2023/en
  • [2] M. M. Mekonnen, A. Y. Hoekstra, “Sustainability: Four billion people facing severe water scarcity,” Science Advances, vol. 2, no. 2, pp. 1-7, 2016.
  • [3] K. Oktor, “Decolorization of Real Slaughterhouse Wastewater with a Freshwater Microalga,” Water, Air, & Soil Pollution, vol. 234, no. 1, 2023.
  • [4] H. Shemer, S. Wald, R. Semiat, “Challenges and Solutions for Global Water Scarcity,” Membranes, vol. 13, no. 6, pp. 612, 2023.
  • [5] H. Jarimi, R. Powell, S. Riffat, “Review of sustainable methods for atmospheric water harvesting,” International Journal of Low-Carbon Technologies, vol. 15, no. 2, pp. 253-276, 2020.
  • [6] J. K. Domen, W. T. Stringfellow, M. K. Camarillo, S. Gulati, “Fog water as an alternative and sustainable water resource,” Clean Technologies and Environmental Policy, vol. 16, no. 2, pp. 235-249, 2014.
  • [7] A. Feng, N. Akther, X. Duan, S. Peng, C. Onggowarsito, S. Mao, Q. Fu, S. D. Kolev, “Recent Development of Atmospheric Water Harvesting Materials: A Review,” American Chemical Society Materials Au, vol. 2, no. 5, pp. 576-595, 2022.
  • [8] Z. Ismail, Y. I. Go, “Fog-to-Water for Water Scarcity in Climate-Change Hazards Hotspots: Pilot Study in Southeast Asia,” Global Challenges, vol. 5, no. 5, 2000036, 2021.
  • [9] D. M. Fernandez, A. Torregrosa, P. S. Weiss-Penzias, B. J. Zhang, D. Sorensen, R. E. Cohen, G. H. McKinley, J. Kleingartner, A. Oliphant, M. Bowman, “Fog water collection effectiveness: Mesh intercomparisons,” Aerosol and Air Quality Research, vol. 18, no. 1, pp. 270-283, 2018.
  • [10] S. Sharifvaghefi, H. Kazerooni, “Fog harvesting: combination and comparison of different methods to maximize the collection efficiency,” Discover Applied Sciences, vol. 3, no. 4, pp. 1-11, 2021.
  • [11] R. Sun, J. Zhao, C. Liu, N. Yu, J. Mo, Y. Pan, D. Luo, “Design and optimization of hybrid superhydrophobic–hydrophilic pattern surfaces for improving fog harvesting efficiency,” Progress in Organic Coatings, vol. 171, no. 107016, 2022.
  • [12] J. Li, W. Li, X. Han, L. Wang, “Sandwiched nets for efficient direction-independent fog collection,” Journal of Colloid and Interface Science, vol. 581, pp. 545-551, 2021.
  • [13] Y. Guo, Y. Li, G. Zhao, Y. Zhang, G. Pan, H. Yu, M. Zhao, G. Tang, Y. Liu, “Patterned Hybrid Wettability Surfaces for Fog Harvesting,” Langmuir, vol. 39, no. 13, pp. 4642-4650, 2023.
  • [14] W. Shi, T. W. van der Sloot, B. J. Hart, B. S. Kennedy, J. B. Boreyko, “Harps Enable Water Harvesting under Light Fog Conditions,” Advanced Sustainable Systems, vol. 4, no. 6, pp. 1-10, 2020.
  • [15] M. Gürsoy, “All-dry patterning method to fabricate hydrophilic/hydrophobic surface for fog harvesting,” Colloid and Polymer Science, vol. 298, no. 8, pp. 969-976, 2020.
  • [16] X. Gou, Z. Guo, “Hybrid Hydrophilic-Hydrophobic CuO@TiO2-Coated Copper Mesh for Efficient Water Harvesting,” Langmuir, vol. 36, no. 1, pp. 64-73, 2020.
  • [17] R. Spirig, R. Vogt, C. Feigenwinter, “Droplet size distribution, liquid watercontent and water input of the seasonally variable, nocturnal fog in the Central Namib Desert,” Atmospheric Research, vol. 262, no. July, p. 105765, 2021.
  • [18] M. Fessehaye, S. A. Abdul-Wahab, M. J. Savage, T. Kohler, T. Gherezghiher, H. Hurni, “Fog-water collection for community use,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 52-62, 2014.
  • [19] Z. Yu, T. Zhu, J. Zhang, M. Ge, S. Fu, Y. Lai, “Fog Harvesting Devices Inspired from Single to Multiple Creatures: Current Progress and Future Perspective,” Advanced Functional Materials, vol. 32, no. 26, pp. 1-20, 2022.
  • [20] Y. Tu, R. Wang, Y. Zhang, J. Wang, “Progress and Expectation of Atmospheric Water Harvesting,” Joule, vol. 2, no. 8, pp. 1452-1475, 2018.
  • [21] J. Song, R. Shi, X. Bai, H. Algadi, D. Sridhar , “An overview of surface with controllable wettability for microfluidic system, intelligent cleaning, water harvesting, and surface protection,” Advanced Composites and Hybrid Materials, vol. 6, no. 22, 2023.
  • [22] Z. Wu, K. Yin, J. Wu, Z. Zhu, J. An Duan, J. He, “Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability,” Nanoscale, vol. 13, pp. 2209-2226, 2021.
  • [23] Y. Shi, O. Ilic, H. A. Atwater, J. R. Greer, “All-day fresh water harvesting by microstructured hydrogel membranes,” Nature Communications, vol. 12, no. 1, pp. 1-10, 2021.
  • [24] K. Yin, H. Du, X. Dong, C. Wang, J. Duan, J. He, “Wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale, vol. 9, no 38, pp. 14620-14626, 2017.
  • [25] F. Fathieh, M. J. Kalmutzki, E. A. Kapustin, P. J. Waller, J. Yang, O. M. Yaghi, “Practical water production from desert air,” Science Advances, vol. 4, no. 6, pp. 1-10, 2018.
  • [26] A. LaPotin, H. Kim, S. R. Rao, E. N. Wang, “Adsorption-Based Atmospheric Water Harvesting: Impact of Material and Component Properties on System-Level Performance,” Accounts of Chemical Research, vol. 52, no. 6, pp. 1588-1597, 2019.
  • [27] X. Zhou, H. Lu, F. Zhao, G. Yu, “Atmospheric Water Harvesting: A Review of Material and Structural Designs,” ACS Materials Letters, vol. 2, no. 7, pp. 671-684, 2020.
  • [28] H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi, E. N. Wang, “Water harvesting from air with metal-organic frameworks powered by natural sunlight,” Science, vol. 356, no. 6336, pp. 430-434, 2017.
  • [29] Climate Technology Centre and Network (CTCN), “Climate Change Adaptation Technologies for Water”, March 12, 2024. [Online]. Available: https://www.ctc n.org/resources/climate-change-adaptation-technologies-water-practitioner-s-guide-adaptation-technologies
  • [30] R. Holmes, J. de D. Rivera, E. de la Jara, “Large fog collectors: New strategies for collection efficiency and structural response to wind pressure,” Atmospheric Research, vol. 151, pp. 236-249, 2015.
  • [31] M. Qadir, G. C. Jiménez, R. L. Farnum, L. L. Dodson, V. Smakhtin, “Fog water collection: Challenges beyond technology,” Water, vol. 10, no. 4, pp. 1-10, 2018.
  • [32] B. Bhushan, “Commercial Applications, Projections of Water Collection, and Design of Water Harvesting Towers,” Springer Series in Materials Science, vol. 299, pp. 155-160, 2020.
  • [33] Y. Jiang, C. Machado, K. C. K. Park, “From capture to transport : A review of engineered surfaces for fog collection,” Droplet, vol.2, no. e55, 2023.
  • [34] D. Nioras, K. Ellinas, V. Constantoudis, E. Gogolides, “How Different Are Fog Collection and Dew Water Harvesting on Surfaces with Different Wetting Behaviors?,” ACS Applied Materials & Interfaces, vol. 13, no. 40, pp. 48322-48332, 2021.
  • [35] G. Morichi, L. B. Calixto, A. Zanelli, “Novel Applications for Fog Water Harvesting,” Journal of Geoscience and Environment Protection, vol. 06, no. 03, pp. 26-36, 2018.
  • [36] K. Wan, X. Gou, Z. Guo, “Bio-inspired Fog Harvesting Materials: Basic Research and Bionic Potential Applications,” Journal of Bionic Engineering, vol. 18, no. 3, pp. 501-533, 2021.
  • [37] O. Klemm, R. S. Schemenauer, A. Lummerich, P. Cereceda, V. Marzol, D. Corell, J. van Heerden, D. Reinhard, T. Gherezghiher, J. Olivier, P. Osses, J. Sarsour, E. Frost, M. J. Estrela, J. A. Valiente, G. M. Fessehaye, “Fog as a fresh-water resource: Overview and perspectives,” Ambio, vol. 41, no. 3, pp. 221-234, 2012.
  • [38] N. Zamani, M. Maleki, F. Eslamian, “Fog water harvesting investigation as a water supply resource in arid and semi-arid areas,” Water Productivity Journal, vol. 1, no. 4, pp. 43-52, 2021.
  • [39] K. C. Park, S. S. Chhatre, S. Srinivasan, R. E. Cohen, G. H. McKinley, “Optimal design of permeable fiber network structures for fog harvesting,” Langmuir, vol. 29, no. 43, pp. 13269-13277, 2013.
  • [40] M. Qadir, G. C. Jiménez, R. L. Farnum, P. Trautwein, “Research History and Functional Systems of Fog Water Harvesting,” Frontiers in Water, vol. 3, no. 37, pp. 1-11, 2021.
  • [41] R. S. Schemenauer, P. Cereceda, P. Osses, “Fog Water Collection Manual”, 3rd ed., Toronto, Canada: FogQuest, 2022, pp. 166.
  • [42] R. S. Schemenauer, P. Cereceda, P. Osses, “Fog Water Collection Manual”, 1st ed., Toronto, Canada: FogQuest, 2005, pp. 1-92.
  • [43] D. Carvajal, M. Mora-Carreño, C. Sandoval, S. Espinoza, “Assessing fog water collection in the coastal mountain range of Antofagasta, Chile,” Journal of Arid Environments, vol. 198, no. 104679, 2022.
  • [44] S. A. Abdul-Wahab, V. Lea, “Reviewing fog water collection worldwide and in Oman,” International Journal of Environmental Studies, vol. 65, no. 3, pp. 487-500, 2008.
  • [45] Munich Re Foundation, “Fog Net Technology,” March 12, 2024. [Online]. Available:https://www.munichre-foundation.org/en/climate-adaptation/fognets/fognet_technology.html
  • [46] A. F. Batisha, “Feasibility and sustainability of fog harvesting,” Sustainability of Water Quality and Ecology, vol. 6, pp. 1-10, 2015.
  • [47] M. Zhang, M. Xiao, C. Li, D. Li, J. Li, K. Yu, Y. Pan, “Enhancing fog collection by optimizing wettability combination and fork-row collector arrangement: light and heavy fog,” Journal of Physics D: Applied Physics, vol. 56, no. 49, 2023.
  • [48] M. Azeem, M. Tayyab, J. Wiener, M. Petru, P. Louda, “Environmental Technology & Innovation Structural design of efficient fog collectors : A review,” Environmental Technology & Innovation, vol. 20, no. 101169, 2020.
  • [49] H. Sun, Y. Song, B. Zhang, Y. Huan, C. Jiang, H. Liu, T. Bao, S. Yu, H. Wang, “Bioinspired micro- and nanostructures used for fog harvesting,” Applied Physics A Material and Science Processing, vol. 127, no. 6, pp. 1-12, 2021.
  • [50] H. Yue, Q. Zeng, J. Huang, Z. Guo, W. Liu, “Fog collection behavior of bionic surface and large fog collector: A review,” Advances in Colloid and Interface Science, vol. 300, no. 102583, 2022.
  • [51] H. Dong, Y. Zheng, N. Wang, H. Bai, L. Wang, J. Wu, Y. Zhao, L. Jiang, “Highly Efficient Fog Collection Unit by Integrating Artificial Spider Silks,” Advanced Materials Interfaces, vol. 3, no. 11, pp. 1-5, 2016.
  • [52] I. Höhler, C. Suau, “Fog collectors and collection techniques,” in 5th International Conference on Fog, Fog Collection and Dew, Münster, Germany, 2010, pp. 135.
  • [53] Q. Wang, Y. He, X. Geng, Y. Hou, Y. Zheng, “Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel,” ACS Applied Materials & Interfaces, vol. 13, no. 40, pp. 48292-48300, 2021.
  • [54] L. Liu, S. Liu, M. Schelp, X. Chen, “Rapid 3D Printing of Bioinspired Hybrid Structures for High-Efficiency Fog Collection and Water Transportation,” ACS Applied Materials & Interfaces, vol. 13, no. 24, pp. 29122-29129, 2021.

Fog Harvesting: An Effective Solution to The Water Scarcity Problem

Year 2024, , 899 - 911, 31.08.2024
https://doi.org/10.16984/saufenbilder.1480488

Abstract

Fog harvesting, also known as fog collection, is a sustainable approach to addressing water scarcity which captures water droplets from fog, providing a renewable water source for water-scarce regions. The aim of this study is to give more background about fog harvesting by introducing fog harvesting systems, their advantages and disadvantages, real world and laboratory projects and efficiency. This study emphasizes fog harvesting's potential in arid regions with frequent fog occurrence, discusses working mechanisms, and explores nature-inspired and nanotechnology-based fog collectors. Local climate data's importance for feasibility assessment is highlighted, along with the vital role of community involvement for long-term success. Fog harvesting offers a promising and environmentally friendly solution to alleviate water scarcity challenges when combined with innovative strategies and community engagement. Real-world projects have shown that fog water collection can be an effective and sustainable solution, particularly in regions with persistent fog and limited water resources. However, more work is needed on innovative fog collectors and advanced materials to increase sustainability.

References

  • [1] E. Summary, “Partnerships and cooperation for water,” December 12, 2023.[Online].Available:https://www.unesco.org/reports/wwdr/2023/en
  • [2] M. M. Mekonnen, A. Y. Hoekstra, “Sustainability: Four billion people facing severe water scarcity,” Science Advances, vol. 2, no. 2, pp. 1-7, 2016.
  • [3] K. Oktor, “Decolorization of Real Slaughterhouse Wastewater with a Freshwater Microalga,” Water, Air, & Soil Pollution, vol. 234, no. 1, 2023.
  • [4] H. Shemer, S. Wald, R. Semiat, “Challenges and Solutions for Global Water Scarcity,” Membranes, vol. 13, no. 6, pp. 612, 2023.
  • [5] H. Jarimi, R. Powell, S. Riffat, “Review of sustainable methods for atmospheric water harvesting,” International Journal of Low-Carbon Technologies, vol. 15, no. 2, pp. 253-276, 2020.
  • [6] J. K. Domen, W. T. Stringfellow, M. K. Camarillo, S. Gulati, “Fog water as an alternative and sustainable water resource,” Clean Technologies and Environmental Policy, vol. 16, no. 2, pp. 235-249, 2014.
  • [7] A. Feng, N. Akther, X. Duan, S. Peng, C. Onggowarsito, S. Mao, Q. Fu, S. D. Kolev, “Recent Development of Atmospheric Water Harvesting Materials: A Review,” American Chemical Society Materials Au, vol. 2, no. 5, pp. 576-595, 2022.
  • [8] Z. Ismail, Y. I. Go, “Fog-to-Water for Water Scarcity in Climate-Change Hazards Hotspots: Pilot Study in Southeast Asia,” Global Challenges, vol. 5, no. 5, 2000036, 2021.
  • [9] D. M. Fernandez, A. Torregrosa, P. S. Weiss-Penzias, B. J. Zhang, D. Sorensen, R. E. Cohen, G. H. McKinley, J. Kleingartner, A. Oliphant, M. Bowman, “Fog water collection effectiveness: Mesh intercomparisons,” Aerosol and Air Quality Research, vol. 18, no. 1, pp. 270-283, 2018.
  • [10] S. Sharifvaghefi, H. Kazerooni, “Fog harvesting: combination and comparison of different methods to maximize the collection efficiency,” Discover Applied Sciences, vol. 3, no. 4, pp. 1-11, 2021.
  • [11] R. Sun, J. Zhao, C. Liu, N. Yu, J. Mo, Y. Pan, D. Luo, “Design and optimization of hybrid superhydrophobic–hydrophilic pattern surfaces for improving fog harvesting efficiency,” Progress in Organic Coatings, vol. 171, no. 107016, 2022.
  • [12] J. Li, W. Li, X. Han, L. Wang, “Sandwiched nets for efficient direction-independent fog collection,” Journal of Colloid and Interface Science, vol. 581, pp. 545-551, 2021.
  • [13] Y. Guo, Y. Li, G. Zhao, Y. Zhang, G. Pan, H. Yu, M. Zhao, G. Tang, Y. Liu, “Patterned Hybrid Wettability Surfaces for Fog Harvesting,” Langmuir, vol. 39, no. 13, pp. 4642-4650, 2023.
  • [14] W. Shi, T. W. van der Sloot, B. J. Hart, B. S. Kennedy, J. B. Boreyko, “Harps Enable Water Harvesting under Light Fog Conditions,” Advanced Sustainable Systems, vol. 4, no. 6, pp. 1-10, 2020.
  • [15] M. Gürsoy, “All-dry patterning method to fabricate hydrophilic/hydrophobic surface for fog harvesting,” Colloid and Polymer Science, vol. 298, no. 8, pp. 969-976, 2020.
  • [16] X. Gou, Z. Guo, “Hybrid Hydrophilic-Hydrophobic CuO@TiO2-Coated Copper Mesh for Efficient Water Harvesting,” Langmuir, vol. 36, no. 1, pp. 64-73, 2020.
  • [17] R. Spirig, R. Vogt, C. Feigenwinter, “Droplet size distribution, liquid watercontent and water input of the seasonally variable, nocturnal fog in the Central Namib Desert,” Atmospheric Research, vol. 262, no. July, p. 105765, 2021.
  • [18] M. Fessehaye, S. A. Abdul-Wahab, M. J. Savage, T. Kohler, T. Gherezghiher, H. Hurni, “Fog-water collection for community use,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 52-62, 2014.
  • [19] Z. Yu, T. Zhu, J. Zhang, M. Ge, S. Fu, Y. Lai, “Fog Harvesting Devices Inspired from Single to Multiple Creatures: Current Progress and Future Perspective,” Advanced Functional Materials, vol. 32, no. 26, pp. 1-20, 2022.
  • [20] Y. Tu, R. Wang, Y. Zhang, J. Wang, “Progress and Expectation of Atmospheric Water Harvesting,” Joule, vol. 2, no. 8, pp. 1452-1475, 2018.
  • [21] J. Song, R. Shi, X. Bai, H. Algadi, D. Sridhar , “An overview of surface with controllable wettability for microfluidic system, intelligent cleaning, water harvesting, and surface protection,” Advanced Composites and Hybrid Materials, vol. 6, no. 22, 2023.
  • [22] Z. Wu, K. Yin, J. Wu, Z. Zhu, J. An Duan, J. He, “Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability,” Nanoscale, vol. 13, pp. 2209-2226, 2021.
  • [23] Y. Shi, O. Ilic, H. A. Atwater, J. R. Greer, “All-day fresh water harvesting by microstructured hydrogel membranes,” Nature Communications, vol. 12, no. 1, pp. 1-10, 2021.
  • [24] K. Yin, H. Du, X. Dong, C. Wang, J. Duan, J. He, “Wettability surface with micro/nanopatterns for efficient fog collection,” Nanoscale, vol. 9, no 38, pp. 14620-14626, 2017.
  • [25] F. Fathieh, M. J. Kalmutzki, E. A. Kapustin, P. J. Waller, J. Yang, O. M. Yaghi, “Practical water production from desert air,” Science Advances, vol. 4, no. 6, pp. 1-10, 2018.
  • [26] A. LaPotin, H. Kim, S. R. Rao, E. N. Wang, “Adsorption-Based Atmospheric Water Harvesting: Impact of Material and Component Properties on System-Level Performance,” Accounts of Chemical Research, vol. 52, no. 6, pp. 1588-1597, 2019.
  • [27] X. Zhou, H. Lu, F. Zhao, G. Yu, “Atmospheric Water Harvesting: A Review of Material and Structural Designs,” ACS Materials Letters, vol. 2, no. 7, pp. 671-684, 2020.
  • [28] H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi, E. N. Wang, “Water harvesting from air with metal-organic frameworks powered by natural sunlight,” Science, vol. 356, no. 6336, pp. 430-434, 2017.
  • [29] Climate Technology Centre and Network (CTCN), “Climate Change Adaptation Technologies for Water”, March 12, 2024. [Online]. Available: https://www.ctc n.org/resources/climate-change-adaptation-technologies-water-practitioner-s-guide-adaptation-technologies
  • [30] R. Holmes, J. de D. Rivera, E. de la Jara, “Large fog collectors: New strategies for collection efficiency and structural response to wind pressure,” Atmospheric Research, vol. 151, pp. 236-249, 2015.
  • [31] M. Qadir, G. C. Jiménez, R. L. Farnum, L. L. Dodson, V. Smakhtin, “Fog water collection: Challenges beyond technology,” Water, vol. 10, no. 4, pp. 1-10, 2018.
  • [32] B. Bhushan, “Commercial Applications, Projections of Water Collection, and Design of Water Harvesting Towers,” Springer Series in Materials Science, vol. 299, pp. 155-160, 2020.
  • [33] Y. Jiang, C. Machado, K. C. K. Park, “From capture to transport : A review of engineered surfaces for fog collection,” Droplet, vol.2, no. e55, 2023.
  • [34] D. Nioras, K. Ellinas, V. Constantoudis, E. Gogolides, “How Different Are Fog Collection and Dew Water Harvesting on Surfaces with Different Wetting Behaviors?,” ACS Applied Materials & Interfaces, vol. 13, no. 40, pp. 48322-48332, 2021.
  • [35] G. Morichi, L. B. Calixto, A. Zanelli, “Novel Applications for Fog Water Harvesting,” Journal of Geoscience and Environment Protection, vol. 06, no. 03, pp. 26-36, 2018.
  • [36] K. Wan, X. Gou, Z. Guo, “Bio-inspired Fog Harvesting Materials: Basic Research and Bionic Potential Applications,” Journal of Bionic Engineering, vol. 18, no. 3, pp. 501-533, 2021.
  • [37] O. Klemm, R. S. Schemenauer, A. Lummerich, P. Cereceda, V. Marzol, D. Corell, J. van Heerden, D. Reinhard, T. Gherezghiher, J. Olivier, P. Osses, J. Sarsour, E. Frost, M. J. Estrela, J. A. Valiente, G. M. Fessehaye, “Fog as a fresh-water resource: Overview and perspectives,” Ambio, vol. 41, no. 3, pp. 221-234, 2012.
  • [38] N. Zamani, M. Maleki, F. Eslamian, “Fog water harvesting investigation as a water supply resource in arid and semi-arid areas,” Water Productivity Journal, vol. 1, no. 4, pp. 43-52, 2021.
  • [39] K. C. Park, S. S. Chhatre, S. Srinivasan, R. E. Cohen, G. H. McKinley, “Optimal design of permeable fiber network structures for fog harvesting,” Langmuir, vol. 29, no. 43, pp. 13269-13277, 2013.
  • [40] M. Qadir, G. C. Jiménez, R. L. Farnum, P. Trautwein, “Research History and Functional Systems of Fog Water Harvesting,” Frontiers in Water, vol. 3, no. 37, pp. 1-11, 2021.
  • [41] R. S. Schemenauer, P. Cereceda, P. Osses, “Fog Water Collection Manual”, 3rd ed., Toronto, Canada: FogQuest, 2022, pp. 166.
  • [42] R. S. Schemenauer, P. Cereceda, P. Osses, “Fog Water Collection Manual”, 1st ed., Toronto, Canada: FogQuest, 2005, pp. 1-92.
  • [43] D. Carvajal, M. Mora-Carreño, C. Sandoval, S. Espinoza, “Assessing fog water collection in the coastal mountain range of Antofagasta, Chile,” Journal of Arid Environments, vol. 198, no. 104679, 2022.
  • [44] S. A. Abdul-Wahab, V. Lea, “Reviewing fog water collection worldwide and in Oman,” International Journal of Environmental Studies, vol. 65, no. 3, pp. 487-500, 2008.
  • [45] Munich Re Foundation, “Fog Net Technology,” March 12, 2024. [Online]. Available:https://www.munichre-foundation.org/en/climate-adaptation/fognets/fognet_technology.html
  • [46] A. F. Batisha, “Feasibility and sustainability of fog harvesting,” Sustainability of Water Quality and Ecology, vol. 6, pp. 1-10, 2015.
  • [47] M. Zhang, M. Xiao, C. Li, D. Li, J. Li, K. Yu, Y. Pan, “Enhancing fog collection by optimizing wettability combination and fork-row collector arrangement: light and heavy fog,” Journal of Physics D: Applied Physics, vol. 56, no. 49, 2023.
  • [48] M. Azeem, M. Tayyab, J. Wiener, M. Petru, P. Louda, “Environmental Technology & Innovation Structural design of efficient fog collectors : A review,” Environmental Technology & Innovation, vol. 20, no. 101169, 2020.
  • [49] H. Sun, Y. Song, B. Zhang, Y. Huan, C. Jiang, H. Liu, T. Bao, S. Yu, H. Wang, “Bioinspired micro- and nanostructures used for fog harvesting,” Applied Physics A Material and Science Processing, vol. 127, no. 6, pp. 1-12, 2021.
  • [50] H. Yue, Q. Zeng, J. Huang, Z. Guo, W. Liu, “Fog collection behavior of bionic surface and large fog collector: A review,” Advances in Colloid and Interface Science, vol. 300, no. 102583, 2022.
  • [51] H. Dong, Y. Zheng, N. Wang, H. Bai, L. Wang, J. Wu, Y. Zhao, L. Jiang, “Highly Efficient Fog Collection Unit by Integrating Artificial Spider Silks,” Advanced Materials Interfaces, vol. 3, no. 11, pp. 1-5, 2016.
  • [52] I. Höhler, C. Suau, “Fog collectors and collection techniques,” in 5th International Conference on Fog, Fog Collection and Dew, Münster, Germany, 2010, pp. 135.
  • [53] Q. Wang, Y. He, X. Geng, Y. Hou, Y. Zheng, “Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel,” ACS Applied Materials & Interfaces, vol. 13, no. 40, pp. 48292-48300, 2021.
  • [54] L. Liu, S. Liu, M. Schelp, X. Chen, “Rapid 3D Printing of Bioinspired Hybrid Structures for High-Efficiency Fog Collection and Water Transportation,” ACS Applied Materials & Interfaces, vol. 13, no. 24, pp. 29122-29129, 2021.
There are 54 citations in total.

Details

Primary Language English
Subjects Global Environmental Engineering, Chemical Engineering (Other)
Journal Section Research Articles
Authors

Kadriye Oktor 0000-0002-7217-4371

Makoi Gai Riak Dhuol 0009-0004-5388-0002

Merve Ercan Kalkan 0000-0002-4334-6322

Early Pub Date August 6, 2024
Publication Date August 31, 2024
Submission Date May 8, 2024
Acceptance Date July 1, 2024
Published in Issue Year 2024

Cite

APA Oktor, K., Dhuol, M. G. R., & Ercan Kalkan, M. (2024). Fog Harvesting: An Effective Solution to The Water Scarcity Problem. Sakarya University Journal of Science, 28(4), 899-911. https://doi.org/10.16984/saufenbilder.1480488
AMA Oktor K, Dhuol MGR, Ercan Kalkan M. Fog Harvesting: An Effective Solution to The Water Scarcity Problem. SAUJS. August 2024;28(4):899-911. doi:10.16984/saufenbilder.1480488
Chicago Oktor, Kadriye, Makoi Gai Riak Dhuol, and Merve Ercan Kalkan. “Fog Harvesting: An Effective Solution to The Water Scarcity Problem”. Sakarya University Journal of Science 28, no. 4 (August 2024): 899-911. https://doi.org/10.16984/saufenbilder.1480488.
EndNote Oktor K, Dhuol MGR, Ercan Kalkan M (August 1, 2024) Fog Harvesting: An Effective Solution to The Water Scarcity Problem. Sakarya University Journal of Science 28 4 899–911.
IEEE K. Oktor, M. G. R. Dhuol, and M. Ercan Kalkan, “Fog Harvesting: An Effective Solution to The Water Scarcity Problem”, SAUJS, vol. 28, no. 4, pp. 899–911, 2024, doi: 10.16984/saufenbilder.1480488.
ISNAD Oktor, Kadriye et al. “Fog Harvesting: An Effective Solution to The Water Scarcity Problem”. Sakarya University Journal of Science 28/4 (August 2024), 899-911. https://doi.org/10.16984/saufenbilder.1480488.
JAMA Oktor K, Dhuol MGR, Ercan Kalkan M. Fog Harvesting: An Effective Solution to The Water Scarcity Problem. SAUJS. 2024;28:899–911.
MLA Oktor, Kadriye et al. “Fog Harvesting: An Effective Solution to The Water Scarcity Problem”. Sakarya University Journal of Science, vol. 28, no. 4, 2024, pp. 899-11, doi:10.16984/saufenbilder.1480488.
Vancouver Oktor K, Dhuol MGR, Ercan Kalkan M. Fog Harvesting: An Effective Solution to The Water Scarcity Problem. SAUJS. 2024;28(4):899-911.