Research Article
BibTex RIS Cite
Year 2024, , 1232 - 1241, 31.12.2024
https://doi.org/10.16984/saufenbilder.1541663

Abstract

References

  • N. Rastogi, “Design of Composite Driveshafts for Automotive Applications,” in SAE Technical Paper Series, SAE International, p. 246, 2004.
  • E. P. Bilalis, M. S. Keramidis, N. G. Tsouvalis, “Structural design optimization of composite materials drive shafts,” Marine Structures, vol. 84, 2022.
  • T. C. Henry, C. E. Bakis, S. W. Miller, E. C. Smith, “Multi-objective optimal design of composite rotorcraft driveshaft including strain rate and temperature effects,” Composite Structures, vol. 128, pp. 42–53, 2015.
  • H. O. Öztürk, Y. Kahraman, “Effects of glass fiber reinforcement to tensile strength in epoxy matrix granular composite materials,” Sakarya University Journal of Science, vol. 23, no. 5, pp. 736–743, 2019.
  • J. Ke, L. Liu, Z. Wu, Z. Le, L. Bao, D. Luo, “Torsional mechanical properties and damage mechanism of glass fiber-ramie hybrid circular tube,” Composite Structures, vol. 327, p. 117680, 2024.
  • W. Jarrett, S. P. Jeffs, F. Korkees, M. Rawson, “The opportunities and challenges of hybrid composite driveshafts and their couplings in the aerospace industry: A review,” Composite Structures, 2023.
  • W. Qi, Z. Xu, Y. Wan, D. Gerada, C. Gerada, “Investigation on the torsional property of hybrid composite/metal shafts at different service temperatures: Experimental and analytical study,” Polymer Composites, vol. 45, no. 12, pp. 11266–11275, 2024.
  • L. Solazzi, D. Bertoli, L. Ghidini, “Static and dynamic study of the industrial vehicle transmission adopting composite materials,” Composite Structures, vol. 316, 2023.
  • A. R. Abu Talib, A. Ali, M. A. Badie, N. Azida Che Lah, A. F. Golestaneh, “Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft,” Materials and Design, vol. 31, no. 1, pp. 514–521, 2010.
  • D. H. Cho, D. G. Lee, J. H. Choi, “Manufacture of one-piece automotive drive shafts with aluminum and composite materials,” Composite Structures, vol. 38, pp. 309–319, 1997.
  • S. A. Mutasher, B. B. Sahari, A. M. S. Hamouda, S. M. Sapuan, “Static and dynamic characteristics of a hybrid aluminium/composite drive shaft,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 221, no. 2, pp. 63–75, 2007.
  • M. Tariq, S. Nisar, A. Shah, S. Akbar, M. A. Khan, S. Z. Khan, “Effect of hybrid reinforcement on the performance of filament wound hollow shaft,” Composite Structures, vol. 184, pp. 378–387, 2018.
  • M. Tariq, S. Nisar, A. Shah, T. Mairaj, S. Akbar, M. A. Khan, S. Z. Khan, “Effect of carbon fiber winding layer on torsional characteristics of filament wound composite shafts,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 4, 2018.
  • M. M. Shokrieh, A. Hasani, L. B. Lessard, “Shear buckling of a composite drive shaft under torsion,” Composite Structures, vol. 64, no. 1, pp. 63–69, 2004.
  • M.S. Okutan, K. Genel, “Investigation of Torsional Performance of Carbon Fiber Composite Driveshaft with Different Stacking Sequence and Fiber Orientation,” in International Conference on Engineering Technologies (ICENTE’21), Konya, Turkey, 2021, pp. 446–451.
  • S. A. Mutasher, “Prediction of the torsional strength of the hybrid aluminum/composite drive shaft,” Materials and Design, vol. 30, no. 2, pp. 215–220, 2009.
  • D. G. Lee, H. S. Kim, J. W. Kim, J. K. Kim, “Design and manufacture of an automotive hybrid aluminum/composite drive shaft,” Composite Structures, vol. 63, no. 1, pp. 87–99, 2004.
  • Y. Hu, M. Yang, J. Zhang, C. Song, T. Hong, “Effect of stacking sequence on the torsional stiffness of the composite drive shaft,” Advanced Composite Materials, vol. 26, no. 6, pp. 537–552, Nov. 2016.
  • T. C. Henry, B. T. Mills, “Optimized design for projectile impact survivability of a carbon fiber composite drive shaft,” Composite Structures, vol. 207, pp. 438–445, 2019.
  • G. Suresh, T. Srinivasan, S. S. Bernard, S. Vivek, R. M. Akash, G. Baradhan, B. Anand, “Analyzing the mechanical behavior of IPN composite drive shaft with E-glass fiber reinforcement,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 1107–1111.
  • E. Sevkat, H. Tumer, M. H. Kelestemur, S. Dogan, “Effect of torsional strain-rate and lay-up sequences on the performance of hybrid composite shafts,” Materials and Design, vol. 60, pp. 310–319, 2014.
  • Y. Chang, W. Wen, Y. Xu, H. Cui, Y. Xu, “Quasi-static mechanical behavior of filament wound composite thin-walled tubes: Tension, torsion, and multi-axial loading,” Thin-Walled Structures, vol. 177, 2022.
  • D. Qi, G. Cheng, “Fatigue behavior of filament-wound glass fiber reinforced epoxy composite tubes under tension/torsion biaxial loading,” Polymer Composites, vol. 28, no. 1, pp. 116–123, 2007.
  • M. A. Badie, E. Mahdi, A. M. S. Hamouda, “An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft,” Materials and Design, vol. 32, no. 3, pp. 1485–1500, 2011.
  • X. Wang, D. Cai, C. Li, F. Lu, Y. Wang, G. Zhou, “Failure analysis of three-dimensional braided composite tubes under torsional load: Experimental study,” Journal of Reinforced Plastics and Composites, vol. 36, no. 12, pp. 878–888, 2017.
  • J. K. Kim, D. G. Lee, D. H. Cho, “Investigation of Adhesively Bonded Joints for Composite Propeller Shafts,” Journal of Composite Materials, vol. 35, no. 11, pp. 999–1021, 2001.
  • W. T. Kim, D. G. Lee, “Torque transmission capabilities of adhesively bonded tubular lap joints for composite drive shafts,” Composite Structures, vol. 30, pp. 229–240, 1995.
  • H. S. Kim, D. G. Lee, “Optimal design of the press fit joint for a hybrid aluminum/composite drive shaft,” Composite Structures, vol. 70, no. 1, pp. 33–47, 2005.
  • E. Sevkat, H. Tumer, “Residual torsional properties of composite shafts subjected to impact loadings,” Materials and Design, vol. 51, pp. 956–967, 2013.
  • F. Soykok, A. R. Ozcan, H. Tas, “Evaluation of the failure responses of filament wound and pre-preg wrapped glass fiber/epoxy composite tubes under quasi-static torsional loading,” Materials Research Express, vol. 6, no. 5, 2019.
  • T. C. Henry, J. C. Riddick, B. T. Mills, E. M. Habtour, “Composite driveshaft prototype design and survivability testing,” Journal of Composite Materials, vol. 51, no. 16, pp. 2377–2386, 2017.
  • Ö. Özbek, Ö. Y. Bozkurt, A. Erkliğ, “Development of a trigger mechanism with circular cut-outs to improve crashworthiness characteristics of glass fiber-reinforced composite pipes,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 1, 2022.
  • M. Akkurt, Makine Elemanları 1. İstanbul/Turkey: Birsen Yayınevi, 2014.
  • R. G. Budynas, J. K. Nisbett, Shigley’s Mechanical Engineering Design 10th Edition, 10th ed. McGraw-Hill, 2015.
  • M. S. Okutan, M. I. Ozsoy, K. Genel, “Failure response of holed aluminum/glass hybrid composite tubes,” Engineering Failure Analysis, vol. 149, 2023.

Design and Application of a Gripping Apparatus for Torsion Testing of Aluminum/Composite Tubes

Year 2024, , 1232 - 1241, 31.12.2024
https://doi.org/10.16984/saufenbilder.1541663

Abstract

As is known, hybrid composite shafts with fibers and metals offer remarkable improvements in terms of mechanical performance, and research is still ongoing in this field. Due to the nature of torsional loading, it is seen that various holding apparatuses are applied for specimens of different diameters to test the specimen without slipping between the test jaws, especially for large parts. This study examines specimen types and connection elements used in torque tests, and a practical solution that can be used in universal testing machines is investigated. In this context, experiments were carried out for unreinforced aluminum tubes and [±452/Al] arrayed specimens using screw clamp connection and shape-bonded designs. It was found that reinforcement of the clamping region of the specimens with an additional layer in hybrid tubes is a preferable solution for shape-bonded connections

References

  • N. Rastogi, “Design of Composite Driveshafts for Automotive Applications,” in SAE Technical Paper Series, SAE International, p. 246, 2004.
  • E. P. Bilalis, M. S. Keramidis, N. G. Tsouvalis, “Structural design optimization of composite materials drive shafts,” Marine Structures, vol. 84, 2022.
  • T. C. Henry, C. E. Bakis, S. W. Miller, E. C. Smith, “Multi-objective optimal design of composite rotorcraft driveshaft including strain rate and temperature effects,” Composite Structures, vol. 128, pp. 42–53, 2015.
  • H. O. Öztürk, Y. Kahraman, “Effects of glass fiber reinforcement to tensile strength in epoxy matrix granular composite materials,” Sakarya University Journal of Science, vol. 23, no. 5, pp. 736–743, 2019.
  • J. Ke, L. Liu, Z. Wu, Z. Le, L. Bao, D. Luo, “Torsional mechanical properties and damage mechanism of glass fiber-ramie hybrid circular tube,” Composite Structures, vol. 327, p. 117680, 2024.
  • W. Jarrett, S. P. Jeffs, F. Korkees, M. Rawson, “The opportunities and challenges of hybrid composite driveshafts and their couplings in the aerospace industry: A review,” Composite Structures, 2023.
  • W. Qi, Z. Xu, Y. Wan, D. Gerada, C. Gerada, “Investigation on the torsional property of hybrid composite/metal shafts at different service temperatures: Experimental and analytical study,” Polymer Composites, vol. 45, no. 12, pp. 11266–11275, 2024.
  • L. Solazzi, D. Bertoli, L. Ghidini, “Static and dynamic study of the industrial vehicle transmission adopting composite materials,” Composite Structures, vol. 316, 2023.
  • A. R. Abu Talib, A. Ali, M. A. Badie, N. Azida Che Lah, A. F. Golestaneh, “Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft,” Materials and Design, vol. 31, no. 1, pp. 514–521, 2010.
  • D. H. Cho, D. G. Lee, J. H. Choi, “Manufacture of one-piece automotive drive shafts with aluminum and composite materials,” Composite Structures, vol. 38, pp. 309–319, 1997.
  • S. A. Mutasher, B. B. Sahari, A. M. S. Hamouda, S. M. Sapuan, “Static and dynamic characteristics of a hybrid aluminium/composite drive shaft,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 221, no. 2, pp. 63–75, 2007.
  • M. Tariq, S. Nisar, A. Shah, S. Akbar, M. A. Khan, S. Z. Khan, “Effect of hybrid reinforcement on the performance of filament wound hollow shaft,” Composite Structures, vol. 184, pp. 378–387, 2018.
  • M. Tariq, S. Nisar, A. Shah, T. Mairaj, S. Akbar, M. A. Khan, S. Z. Khan, “Effect of carbon fiber winding layer on torsional characteristics of filament wound composite shafts,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 4, 2018.
  • M. M. Shokrieh, A. Hasani, L. B. Lessard, “Shear buckling of a composite drive shaft under torsion,” Composite Structures, vol. 64, no. 1, pp. 63–69, 2004.
  • M.S. Okutan, K. Genel, “Investigation of Torsional Performance of Carbon Fiber Composite Driveshaft with Different Stacking Sequence and Fiber Orientation,” in International Conference on Engineering Technologies (ICENTE’21), Konya, Turkey, 2021, pp. 446–451.
  • S. A. Mutasher, “Prediction of the torsional strength of the hybrid aluminum/composite drive shaft,” Materials and Design, vol. 30, no. 2, pp. 215–220, 2009.
  • D. G. Lee, H. S. Kim, J. W. Kim, J. K. Kim, “Design and manufacture of an automotive hybrid aluminum/composite drive shaft,” Composite Structures, vol. 63, no. 1, pp. 87–99, 2004.
  • Y. Hu, M. Yang, J. Zhang, C. Song, T. Hong, “Effect of stacking sequence on the torsional stiffness of the composite drive shaft,” Advanced Composite Materials, vol. 26, no. 6, pp. 537–552, Nov. 2016.
  • T. C. Henry, B. T. Mills, “Optimized design for projectile impact survivability of a carbon fiber composite drive shaft,” Composite Structures, vol. 207, pp. 438–445, 2019.
  • G. Suresh, T. Srinivasan, S. S. Bernard, S. Vivek, R. M. Akash, G. Baradhan, B. Anand, “Analyzing the mechanical behavior of IPN composite drive shaft with E-glass fiber reinforcement,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 1107–1111.
  • E. Sevkat, H. Tumer, M. H. Kelestemur, S. Dogan, “Effect of torsional strain-rate and lay-up sequences on the performance of hybrid composite shafts,” Materials and Design, vol. 60, pp. 310–319, 2014.
  • Y. Chang, W. Wen, Y. Xu, H. Cui, Y. Xu, “Quasi-static mechanical behavior of filament wound composite thin-walled tubes: Tension, torsion, and multi-axial loading,” Thin-Walled Structures, vol. 177, 2022.
  • D. Qi, G. Cheng, “Fatigue behavior of filament-wound glass fiber reinforced epoxy composite tubes under tension/torsion biaxial loading,” Polymer Composites, vol. 28, no. 1, pp. 116–123, 2007.
  • M. A. Badie, E. Mahdi, A. M. S. Hamouda, “An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft,” Materials and Design, vol. 32, no. 3, pp. 1485–1500, 2011.
  • X. Wang, D. Cai, C. Li, F. Lu, Y. Wang, G. Zhou, “Failure analysis of three-dimensional braided composite tubes under torsional load: Experimental study,” Journal of Reinforced Plastics and Composites, vol. 36, no. 12, pp. 878–888, 2017.
  • J. K. Kim, D. G. Lee, D. H. Cho, “Investigation of Adhesively Bonded Joints for Composite Propeller Shafts,” Journal of Composite Materials, vol. 35, no. 11, pp. 999–1021, 2001.
  • W. T. Kim, D. G. Lee, “Torque transmission capabilities of adhesively bonded tubular lap joints for composite drive shafts,” Composite Structures, vol. 30, pp. 229–240, 1995.
  • H. S. Kim, D. G. Lee, “Optimal design of the press fit joint for a hybrid aluminum/composite drive shaft,” Composite Structures, vol. 70, no. 1, pp. 33–47, 2005.
  • E. Sevkat, H. Tumer, “Residual torsional properties of composite shafts subjected to impact loadings,” Materials and Design, vol. 51, pp. 956–967, 2013.
  • F. Soykok, A. R. Ozcan, H. Tas, “Evaluation of the failure responses of filament wound and pre-preg wrapped glass fiber/epoxy composite tubes under quasi-static torsional loading,” Materials Research Express, vol. 6, no. 5, 2019.
  • T. C. Henry, J. C. Riddick, B. T. Mills, E. M. Habtour, “Composite driveshaft prototype design and survivability testing,” Journal of Composite Materials, vol. 51, no. 16, pp. 2377–2386, 2017.
  • Ö. Özbek, Ö. Y. Bozkurt, A. Erkliğ, “Development of a trigger mechanism with circular cut-outs to improve crashworthiness characteristics of glass fiber-reinforced composite pipes,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 1, 2022.
  • M. Akkurt, Makine Elemanları 1. İstanbul/Turkey: Birsen Yayınevi, 2014.
  • R. G. Budynas, J. K. Nisbett, Shigley’s Mechanical Engineering Design 10th Edition, 10th ed. McGraw-Hill, 2015.
  • M. S. Okutan, M. I. Ozsoy, K. Genel, “Failure response of holed aluminum/glass hybrid composite tubes,” Engineering Failure Analysis, vol. 149, 2023.
There are 35 citations in total.

Details

Primary Language English
Subjects Machine Design and Machine Equipment, Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Mustafa Said Okutan 0000-0002-4612-9147

Kenan Genel 0000-0003-0994-2806

Early Pub Date December 11, 2024
Publication Date December 31, 2024
Submission Date September 1, 2024
Acceptance Date November 29, 2024
Published in Issue Year 2024

Cite

APA Okutan, M. S., & Genel, K. (2024). Design and Application of a Gripping Apparatus for Torsion Testing of Aluminum/Composite Tubes. Sakarya University Journal of Science, 28(6), 1232-1241. https://doi.org/10.16984/saufenbilder.1541663
AMA Okutan MS, Genel K. Design and Application of a Gripping Apparatus for Torsion Testing of Aluminum/Composite Tubes. SAUJS. December 2024;28(6):1232-1241. doi:10.16984/saufenbilder.1541663
Chicago Okutan, Mustafa Said, and Kenan Genel. “Design and Application of a Gripping Apparatus for Torsion Testing of Aluminum/Composite Tubes”. Sakarya University Journal of Science 28, no. 6 (December 2024): 1232-41. https://doi.org/10.16984/saufenbilder.1541663.
EndNote Okutan MS, Genel K (December 1, 2024) Design and Application of a Gripping Apparatus for Torsion Testing of Aluminum/Composite Tubes. Sakarya University Journal of Science 28 6 1232–1241.
IEEE M. S. Okutan and K. Genel, “Design and Application of a Gripping Apparatus for Torsion Testing of Aluminum/Composite Tubes”, SAUJS, vol. 28, no. 6, pp. 1232–1241, 2024, doi: 10.16984/saufenbilder.1541663.
ISNAD Okutan, Mustafa Said - Genel, Kenan. “Design and Application of a Gripping Apparatus for Torsion Testing of Aluminum/Composite Tubes”. Sakarya University Journal of Science 28/6 (December 2024), 1232-1241. https://doi.org/10.16984/saufenbilder.1541663.
JAMA Okutan MS, Genel K. Design and Application of a Gripping Apparatus for Torsion Testing of Aluminum/Composite Tubes. SAUJS. 2024;28:1232–1241.
MLA Okutan, Mustafa Said and Kenan Genel. “Design and Application of a Gripping Apparatus for Torsion Testing of Aluminum/Composite Tubes”. Sakarya University Journal of Science, vol. 28, no. 6, 2024, pp. 1232-41, doi:10.16984/saufenbilder.1541663.
Vancouver Okutan MS, Genel K. Design and Application of a Gripping Apparatus for Torsion Testing of Aluminum/Composite Tubes. SAUJS. 2024;28(6):1232-41.