Research Article
BibTex RIS Cite

Topraktan izole edilen Bacillus türlerinin tanımlanması ve biyolojik özelliklerinin araştırılması

Year 2016, , 281 - 290, 01.08.2016
https://doi.org/10.16984/saufenbilder.04840

Abstract

Bu çalışmada, Giresun adasından toplanan toprak örneklerinden Bacillus izolasyonu yapılmıştır. Bu izolatlar morfolojik, biyokimyasal ve moleküler olarak tanımlanmıştır. Tanımlanan Bacillus’larda bazı ekstrasellüler enzimlerinin varlığı kalitatif olarak incelenmiştir. Ayrıca Bacillus izolatlarının bazı bakterilere karşı antibakteriyal aktiviteleri agar difüzyon metoduna göre araştırılmıştır. Sonuç olarak 38 izolat B. cereus grubu üyesi, 7 izolat B. thuringiensis, 10 izolat B. megaterium, 6 izolat B. pumilus ve 12 izolat Bacillus sp. olarak tanımlanmıştır. Bacillus izolatlarının ekstrasellüler enzim aktivite sonuçları değerlendirildiğinde 38 izolatın amilaz, 53 izolatın lipaz/esteraz, 16 izolatın kitinaz, 7 izolatın ksilanaz, 2 izolatın pektinaz, 73 izolatın proteaz ve 35 izolatın selülaz enzim aktivitesi pozitif olarak bulunmuştur. Çalışmada kullanılan Bacillus izolatları test edilen mikroorganizmaların gelişmelerini değişik oranlarda engellemiştir. Dokuz izolat yüksek antibakteriyal aktivite göstermiştir. 

References

  • KAYNAKLAR (REFERENCES)
  • Radley, J. A., Production of Microbial Amylolytic Enzymes: Starch Production Technology. Editör : Underkofler, L.A. Applied Science Publisher Ld. England, 1976.
  • Aira, S., Kilal K. and Imanaka A., Cloning and expression of thermostable α-amylase gene from Bacillus stearothermophilus in Bacillus stearothermophilus and Bacillus subtilis, Appl. Environ. Microbiol., 46, 1059-1065, 1983.
  • Olufunke, Femi-Ola T., O. and Azeez, I. I., Purification and Characterization of Beta-Amylase of Bacillus subtilis Isolated from Kolanut Weevil”, J Biol. Life Sci., 4, 68-78, 2013.
  • Saxena, R. K., Sheoran, A., Giri, B. and Davidson, S. W., Purification strategies for microbial lipases, J Microbiol. Methods, 52, 1-18, 2003.
  • Ertuğrul, S., Dönmez, G. and Takaç, S., Isoloation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity, J Hazard. Materials, 149, 720-724, 2007.
  • Flach, J., Plet, P. E. and Jolles, P., What’s the new in chitinase research?, Experientia, 48, 701-716, 1992.
  • Roberts, W. K. and Selitrennıkoff, C. P., Plant and bacterial chitinases differ in antifungal activity, J Gen. Microbiol., 134, 169-176, 1988.
  • Goodey, G. W., The ecology of chitin degradation, Adv. Microb. Ecol., 11, 387-430, 1990.
  • Leah, R., Tommerup, H., Svendsen I. and Mundy, J., Biochemical and molecular characterisation three barley seed proteins with antifungal properties, J Biol. Chem., 266, 1564-1573, 1995.
  • Bassler, B. L., Yu, C., Lee, Y. C. and Roseman, S., Chitin Utilization By Marine Bacteria: Degradation and Catabolism of Chitin-Oligosaccarides By Vibrio Furnissi, J Biol. Chem., 266, 24276-24286, 1991.
  • Tomassen, J., Fıllloux, A., Bally, M., Murgıer, M. and Lazdundskı, A., Protein Secretion İn Pseudomonas aeruginosa, FEMS Microbiol. Rew., 103, 73-90, 1992.
  • Suzuki, K., Suzuki, M., Tayıyojı, M., Mıkaıdou, N. and Watanabe, T. Chitin-Binding Protein (Cbp-21) İn The Culture Supernatant Serratia Marsescens. 2170, Bio. Biotech. Biochem., 62, 128-135, 1998.
  • Yang, V.W., Zhuang, Z., Elegir, G. and Jeffries, T.W. Alkaline-actıve xylanase produced by an alkaliphilic Bacillus sp. isolated from Kraft Pulp, J Ind. Microbiol., 15, 434-441, 1995.
  • Salles, B. C., Cunha, R. B., Fontes, W., Sousa, M. V. and Filho, E. X. F. Purification and characterization of a new xylanase from Acrophialophora nainiana, J Biotech., 81, 199-204, 2000.
  • Gamerith, G., Groicher, R., Zeilinger, S., Herzog, P. and Kubicek, C. P., Cellulase-Poor Xylanases Produced by Trichoderma reesei RUTC-30 on Hemicellulase Substrates, Appl. Microbiol. Biotech., 38, 315-322, 1992.
  • Roy N. and Rowshanul H. M., Isolation and characterization of Xylanase producing strain of Bacillus cereus from soil, Microbiology, 1, 49-53, 2009.
  • Yener, F. Pektinaz enziminin farkli iki destek üzerine immobilizasyonu ve karakterizasyonu. Yüksek lisans tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 2007.
  • Kumar D. J. M. Saranya, G. M., Suresh K, Andal P. D, Rajakumar R. and Kalaichelvan P. T., “Production and Optimization of Pectinase from Bacillus sp. MFW7 using Cassava Waste, Asian J Plant Sci. Res., 2, 369-375, 2012.
  • Banerjee, U. C., Sani, R. K., Azmi, W., Soni, R., Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive, Proc. Biochem., 35, 213-219, 1999.
  • Teeri, T. T., Koivula, A., Linder, M., Wohlfahrt, G., Divne, C. and Jones, T. A. Trichoderma reesei cellobiohydrolases: why so efficent on crystalline cellulose, Biochem.Soc. Trans., 26, 173-178, 1998.
  • Tomme, P., Warren, R. A. and Gilkes, N. R. Cellulose hydrolis this bacteria and fungi, Adv. Microb.l Physiol., 37, 1-81, 1995.
  • Ito, S., Alkaline cellulases from alkaliphilic Bacillus Enzymatic properties, genetics, and application to detergents, Extremophiles, 1, 61-66, 1997.
  • Perez, C., Suarez, C. and Castro, G. R. Antimicrobial Activity Determined in Strains of Bacillus circulans Cluster, Folia Microbiol., 38, 25-28, 1993.
  • Sharif, F. A. and Alaeddinoğlu, N. G., A Rapid and Simple Method for Staining of the Crystal Protein of Bacillus thuringiensis, J Ind. Microbiol., 3, 227-229, 1988.
  • Beffa, T., Blanc, M., Lyon. P. F., Vogt G., Marchıanı, M., Fıscher, J. L. and Aragno, M. Isolation of Thermus Strains from Hot Composts (60 to 80°C), Appl. Envıron. Microbiol., 62, 1723-1727, 1996.
  • Sambrook J. and Russell, D. W., Molecular Cloning: A Laboratory Manual (3. Basım). New York, USA: Cold Spring Harbor Laboratory Press, 2001.
  • Çoşkun A., Endüstriyel Enzimler Üreten Yeni Bacıllus sp. Suşlarının İzolasyonu ve Karakterizasyonu. Yüksek Lisans Tezi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, 2010.
  • Okay, S., Cloning of chitinase a gene (chıa) from Serratıa marcescens Bn10 and ıts expressıon ın coleoptera-specıfıc Bacıllus thurıngıensıs. Yüksek Lisans Tezi. Middle East Technıcal Unıversıty, Ankara, 2005.
  • Kugiyama, W. Y. Otani, Y. Hashimoto, and Y. Tagagi., Molecular cloning and nucleotide sequence of lipase gene”, Biochemical and Biophysical Research Communications, 14,185-190, 1980.
  • Haba, E., Bresko O., Ferrer C., Marqués A., Busquets M. and Manresa A. 2000. Isolation of lipase-secreting bacteria by deploying selective substrate, Enzyme Microb. Technol., 26, 40-44.
  • Litthauer, D., Ginster A. and Skein E. V. E., Pseudomonas luteola lipase: A new member of the 320-residue Pseudomonas lipase family, Enzyme and Microbial Technology, 30, 209-215, 2002.
  • Altan A., Isolation and Molecular Characterization of Extracellular Lipase and Pectinase Producing Bacteria from Olive Oil Mills, Yüksek lisans Tezi, 2004.
  • Ali, O. A. G. Formation of proteases by Aspergillus fumigatus and pencillium sp., J King Saud University, 4, 127-136, 1992.
  • Skerman, V. B. D., McGowan, V. and Sneath, P. H. A. Approved lists of bacterial names. Washington, DC: American Society for Microbiology, 1989.
  • Berliner, E. Über die Schlaffsucht der mehlmottenraupe (Ephestiakühniella Zell) und ihren erreger Bacillus thuringiensis n. sp., Zeitschrift fur ange-wandte Entomologie Berlin 2, 29-56, 1915.
  • Nakamura, L. K. Bacillus pseudomycoides sp nov., Int. J. Syst. Bacteriol., 48, 1031-1035, 1998.
  • Lechner, S., Mayr, R., Francis, K. P., Prüss, B. M., Kaplan, T., Wiessner-Gunkel, E., Stewart, G. S. A. B. and Scherer, S. Bacillus weihenstephanensis sp nov. is anew psychrotolerant species of the Bacillus cereus group, International Journal of Systematic Bacteriology, 48, 1373-1382, 1998.
  • Guinebretière, M.-H., Auger, S., Galleron, N., Contzen, M., De Sarrau, B., DeBuyser, M.-L., Lamberret, G., Fagerlund, A., Granum, P.E., Lereclus, D., De Vos, P.,Nguyen-The, C. and Sorokin, A., Bacillus cytotoxicus sp nov. is a new thermo-tolerant species of the Bacillus cereus group occasionally associated with foodpoisoning, Int. J. Syst. Evol. Microbiol., 63, 31-40, 2013.
  • Shivaji, S., Chaturvedi P., Begum Z., Pindi, P. K., Manorama, R., Padmanaban D. A., Shouche, Y. S., Pawar, S., Vaishampayan P., Dutt, C. B. S., Datta, G. N., Manchanda, R. K., Rao, U. R., Bhargava, P. M. and Narlikar, J. V., Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere, Int. J. Syst. Evol. Microbiol., 59, 2977-2986, 2009.
  • Tagg, J. R., Dajani, A. S. and Wannamaker, W. L., Bacteriocins of Gram-Positive Bacteria, Bacteriology Reviews, 40, 722-756, 1976.
  • Le Marrec, C., Hyronimus, B., Bressollier, P., Verneuil, B., Urdaci, M. C., Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin by Bacillus coagulans I(4), Appl. Environ. Microbiol., 66, 5213-5220, 2000.
  • Zheng, G. and Slavik, M. F., Isolation, partial purification and characterisation of a Bacteriocin produced by a newly isolated Bacillus subtilis strain, Lett. Appl. Microbiol, 28, 363-367, 1999.
  • Pattnaik, P., Kaushik, J. K., Grover, S. and Batish, V. K., Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo, J Appl. Microbiol., 91, 636-645, 2001.
  • Cherif, A., Ouzari, H., Daffonchio, D., Cherif, H., Ben Slama, K., Hassen, A., Jaoua, S. and Boudabous, A., Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil, Letters in Applied Microbiology, 32, 243-247, 2001.
  • Waites, M. J., Morgan, N. L., Rockey, Higton, J. S. M., Industrial Microbiology an Introduction. London: Blackwell Publisher, 2008.
  • Wei, G. and Kloepper, J. W., Tuzun, S., Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria, Phytopathology, 81, 1508-1512, 1991.
  • Chen, C., Bauske, E. M., Musson, G., Rodríguez-Kábana, R. and Kloepper, J. W., Biological control of Fusarium wilt on cotton by use of endophytic bacteria, Biological Control 5, 83-91, 1995.
  • Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J. and Handelsman, J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85, Appl. Environ. Microbiol., 60, 2023-2030, 1994.
  • Stabb, E. V., Jacobson, Lynn, M. and Handelsman, J., Zwittermicin A-Producing strains of Bacillus cereus from diverse soils, Appl. Environ. Microbiol, 60, 4404-4412, 1994.
  • Asaka, O. and Shoda, M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14, Appl. Environ. Microbiol. 62, 4081-4085, 1996.

Identification of Bacillus species isolated from soil and investigation of their biological properties

Year 2016, , 281 - 290, 01.08.2016
https://doi.org/10.16984/saufenbilder.04840

Abstract

In this study, Bacillus isolation were performed from soil samples collected from Giresun Island. These isolates were characterized as morphological, biochemical, and molecular. The presence of some extracellular enzymes in the identified Bacillus isolates were qualitatively investigated. Furthermore the antibacterial activities of the Bacillus isolates against some bacteria were examined by the agar diffusion method. As a result 38 isolates were identified as the members of B. cereus group, 7 as B. thuringiensis, 10 as B. megaterium, 6 as B. pumilus, and 12 as Bacillus sp. When the extracellular enzyme activity results of the identified Bacillus isolates were evaluated, it was found that 38 of these have amylase, 53 have lipase/esterase, 16 have chitinase, 7 have xylanase, 2 have pectinase, 73 have protease, and 35 have cellulase positive enzyme activities. The Bacillus isolates used in this study inhibited the growth of tested microorganisms in varying ratios. Nine isolates show high antibacterial activity.

References

  • KAYNAKLAR (REFERENCES)
  • Radley, J. A., Production of Microbial Amylolytic Enzymes: Starch Production Technology. Editör : Underkofler, L.A. Applied Science Publisher Ld. England, 1976.
  • Aira, S., Kilal K. and Imanaka A., Cloning and expression of thermostable α-amylase gene from Bacillus stearothermophilus in Bacillus stearothermophilus and Bacillus subtilis, Appl. Environ. Microbiol., 46, 1059-1065, 1983.
  • Olufunke, Femi-Ola T., O. and Azeez, I. I., Purification and Characterization of Beta-Amylase of Bacillus subtilis Isolated from Kolanut Weevil”, J Biol. Life Sci., 4, 68-78, 2013.
  • Saxena, R. K., Sheoran, A., Giri, B. and Davidson, S. W., Purification strategies for microbial lipases, J Microbiol. Methods, 52, 1-18, 2003.
  • Ertuğrul, S., Dönmez, G. and Takaç, S., Isoloation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity, J Hazard. Materials, 149, 720-724, 2007.
  • Flach, J., Plet, P. E. and Jolles, P., What’s the new in chitinase research?, Experientia, 48, 701-716, 1992.
  • Roberts, W. K. and Selitrennıkoff, C. P., Plant and bacterial chitinases differ in antifungal activity, J Gen. Microbiol., 134, 169-176, 1988.
  • Goodey, G. W., The ecology of chitin degradation, Adv. Microb. Ecol., 11, 387-430, 1990.
  • Leah, R., Tommerup, H., Svendsen I. and Mundy, J., Biochemical and molecular characterisation three barley seed proteins with antifungal properties, J Biol. Chem., 266, 1564-1573, 1995.
  • Bassler, B. L., Yu, C., Lee, Y. C. and Roseman, S., Chitin Utilization By Marine Bacteria: Degradation and Catabolism of Chitin-Oligosaccarides By Vibrio Furnissi, J Biol. Chem., 266, 24276-24286, 1991.
  • Tomassen, J., Fıllloux, A., Bally, M., Murgıer, M. and Lazdundskı, A., Protein Secretion İn Pseudomonas aeruginosa, FEMS Microbiol. Rew., 103, 73-90, 1992.
  • Suzuki, K., Suzuki, M., Tayıyojı, M., Mıkaıdou, N. and Watanabe, T. Chitin-Binding Protein (Cbp-21) İn The Culture Supernatant Serratia Marsescens. 2170, Bio. Biotech. Biochem., 62, 128-135, 1998.
  • Yang, V.W., Zhuang, Z., Elegir, G. and Jeffries, T.W. Alkaline-actıve xylanase produced by an alkaliphilic Bacillus sp. isolated from Kraft Pulp, J Ind. Microbiol., 15, 434-441, 1995.
  • Salles, B. C., Cunha, R. B., Fontes, W., Sousa, M. V. and Filho, E. X. F. Purification and characterization of a new xylanase from Acrophialophora nainiana, J Biotech., 81, 199-204, 2000.
  • Gamerith, G., Groicher, R., Zeilinger, S., Herzog, P. and Kubicek, C. P., Cellulase-Poor Xylanases Produced by Trichoderma reesei RUTC-30 on Hemicellulase Substrates, Appl. Microbiol. Biotech., 38, 315-322, 1992.
  • Roy N. and Rowshanul H. M., Isolation and characterization of Xylanase producing strain of Bacillus cereus from soil, Microbiology, 1, 49-53, 2009.
  • Yener, F. Pektinaz enziminin farkli iki destek üzerine immobilizasyonu ve karakterizasyonu. Yüksek lisans tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 2007.
  • Kumar D. J. M. Saranya, G. M., Suresh K, Andal P. D, Rajakumar R. and Kalaichelvan P. T., “Production and Optimization of Pectinase from Bacillus sp. MFW7 using Cassava Waste, Asian J Plant Sci. Res., 2, 369-375, 2012.
  • Banerjee, U. C., Sani, R. K., Azmi, W., Soni, R., Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive, Proc. Biochem., 35, 213-219, 1999.
  • Teeri, T. T., Koivula, A., Linder, M., Wohlfahrt, G., Divne, C. and Jones, T. A. Trichoderma reesei cellobiohydrolases: why so efficent on crystalline cellulose, Biochem.Soc. Trans., 26, 173-178, 1998.
  • Tomme, P., Warren, R. A. and Gilkes, N. R. Cellulose hydrolis this bacteria and fungi, Adv. Microb.l Physiol., 37, 1-81, 1995.
  • Ito, S., Alkaline cellulases from alkaliphilic Bacillus Enzymatic properties, genetics, and application to detergents, Extremophiles, 1, 61-66, 1997.
  • Perez, C., Suarez, C. and Castro, G. R. Antimicrobial Activity Determined in Strains of Bacillus circulans Cluster, Folia Microbiol., 38, 25-28, 1993.
  • Sharif, F. A. and Alaeddinoğlu, N. G., A Rapid and Simple Method for Staining of the Crystal Protein of Bacillus thuringiensis, J Ind. Microbiol., 3, 227-229, 1988.
  • Beffa, T., Blanc, M., Lyon. P. F., Vogt G., Marchıanı, M., Fıscher, J. L. and Aragno, M. Isolation of Thermus Strains from Hot Composts (60 to 80°C), Appl. Envıron. Microbiol., 62, 1723-1727, 1996.
  • Sambrook J. and Russell, D. W., Molecular Cloning: A Laboratory Manual (3. Basım). New York, USA: Cold Spring Harbor Laboratory Press, 2001.
  • Çoşkun A., Endüstriyel Enzimler Üreten Yeni Bacıllus sp. Suşlarının İzolasyonu ve Karakterizasyonu. Yüksek Lisans Tezi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, 2010.
  • Okay, S., Cloning of chitinase a gene (chıa) from Serratıa marcescens Bn10 and ıts expressıon ın coleoptera-specıfıc Bacıllus thurıngıensıs. Yüksek Lisans Tezi. Middle East Technıcal Unıversıty, Ankara, 2005.
  • Kugiyama, W. Y. Otani, Y. Hashimoto, and Y. Tagagi., Molecular cloning and nucleotide sequence of lipase gene”, Biochemical and Biophysical Research Communications, 14,185-190, 1980.
  • Haba, E., Bresko O., Ferrer C., Marqués A., Busquets M. and Manresa A. 2000. Isolation of lipase-secreting bacteria by deploying selective substrate, Enzyme Microb. Technol., 26, 40-44.
  • Litthauer, D., Ginster A. and Skein E. V. E., Pseudomonas luteola lipase: A new member of the 320-residue Pseudomonas lipase family, Enzyme and Microbial Technology, 30, 209-215, 2002.
  • Altan A., Isolation and Molecular Characterization of Extracellular Lipase and Pectinase Producing Bacteria from Olive Oil Mills, Yüksek lisans Tezi, 2004.
  • Ali, O. A. G. Formation of proteases by Aspergillus fumigatus and pencillium sp., J King Saud University, 4, 127-136, 1992.
  • Skerman, V. B. D., McGowan, V. and Sneath, P. H. A. Approved lists of bacterial names. Washington, DC: American Society for Microbiology, 1989.
  • Berliner, E. Über die Schlaffsucht der mehlmottenraupe (Ephestiakühniella Zell) und ihren erreger Bacillus thuringiensis n. sp., Zeitschrift fur ange-wandte Entomologie Berlin 2, 29-56, 1915.
  • Nakamura, L. K. Bacillus pseudomycoides sp nov., Int. J. Syst. Bacteriol., 48, 1031-1035, 1998.
  • Lechner, S., Mayr, R., Francis, K. P., Prüss, B. M., Kaplan, T., Wiessner-Gunkel, E., Stewart, G. S. A. B. and Scherer, S. Bacillus weihenstephanensis sp nov. is anew psychrotolerant species of the Bacillus cereus group, International Journal of Systematic Bacteriology, 48, 1373-1382, 1998.
  • Guinebretière, M.-H., Auger, S., Galleron, N., Contzen, M., De Sarrau, B., DeBuyser, M.-L., Lamberret, G., Fagerlund, A., Granum, P.E., Lereclus, D., De Vos, P.,Nguyen-The, C. and Sorokin, A., Bacillus cytotoxicus sp nov. is a new thermo-tolerant species of the Bacillus cereus group occasionally associated with foodpoisoning, Int. J. Syst. Evol. Microbiol., 63, 31-40, 2013.
  • Shivaji, S., Chaturvedi P., Begum Z., Pindi, P. K., Manorama, R., Padmanaban D. A., Shouche, Y. S., Pawar, S., Vaishampayan P., Dutt, C. B. S., Datta, G. N., Manchanda, R. K., Rao, U. R., Bhargava, P. M. and Narlikar, J. V., Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere, Int. J. Syst. Evol. Microbiol., 59, 2977-2986, 2009.
  • Tagg, J. R., Dajani, A. S. and Wannamaker, W. L., Bacteriocins of Gram-Positive Bacteria, Bacteriology Reviews, 40, 722-756, 1976.
  • Le Marrec, C., Hyronimus, B., Bressollier, P., Verneuil, B., Urdaci, M. C., Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin by Bacillus coagulans I(4), Appl. Environ. Microbiol., 66, 5213-5220, 2000.
  • Zheng, G. and Slavik, M. F., Isolation, partial purification and characterisation of a Bacteriocin produced by a newly isolated Bacillus subtilis strain, Lett. Appl. Microbiol, 28, 363-367, 1999.
  • Pattnaik, P., Kaushik, J. K., Grover, S. and Batish, V. K., Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo, J Appl. Microbiol., 91, 636-645, 2001.
  • Cherif, A., Ouzari, H., Daffonchio, D., Cherif, H., Ben Slama, K., Hassen, A., Jaoua, S. and Boudabous, A., Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil, Letters in Applied Microbiology, 32, 243-247, 2001.
  • Waites, M. J., Morgan, N. L., Rockey, Higton, J. S. M., Industrial Microbiology an Introduction. London: Blackwell Publisher, 2008.
  • Wei, G. and Kloepper, J. W., Tuzun, S., Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria, Phytopathology, 81, 1508-1512, 1991.
  • Chen, C., Bauske, E. M., Musson, G., Rodríguez-Kábana, R. and Kloepper, J. W., Biological control of Fusarium wilt on cotton by use of endophytic bacteria, Biological Control 5, 83-91, 1995.
  • Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J. and Handelsman, J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85, Appl. Environ. Microbiol., 60, 2023-2030, 1994.
  • Stabb, E. V., Jacobson, Lynn, M. and Handelsman, J., Zwittermicin A-Producing strains of Bacillus cereus from diverse soils, Appl. Environ. Microbiol, 60, 4404-4412, 1994.
  • Asaka, O. and Shoda, M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14, Appl. Environ. Microbiol. 62, 4081-4085, 1996.
There are 51 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Hatice Katı

Burak Karaca This is me

Şebnem Hazal Gülşen This is me

Publication Date August 1, 2016
Submission Date July 6, 2015
Acceptance Date February 24, 2016
Published in Issue Year 2016

Cite

APA Katı, H., Karaca, B., & Gülşen, Ş. H. (2016). Identification of Bacillus species isolated from soil and investigation of their biological properties. Sakarya University Journal of Science, 20(2), 281-290. https://doi.org/10.16984/saufenbilder.04840
AMA Katı H, Karaca B, Gülşen ŞH. Identification of Bacillus species isolated from soil and investigation of their biological properties. SAUJS. August 2016;20(2):281-290. doi:10.16984/saufenbilder.04840
Chicago Katı, Hatice, Burak Karaca, and Şebnem Hazal Gülşen. “Identification of Bacillus Species Isolated from Soil and Investigation of Their Biological Properties”. Sakarya University Journal of Science 20, no. 2 (August 2016): 281-90. https://doi.org/10.16984/saufenbilder.04840.
EndNote Katı H, Karaca B, Gülşen ŞH (August 1, 2016) Identification of Bacillus species isolated from soil and investigation of their biological properties. Sakarya University Journal of Science 20 2 281–290.
IEEE H. Katı, B. Karaca, and Ş. H. Gülşen, “Identification of Bacillus species isolated from soil and investigation of their biological properties”, SAUJS, vol. 20, no. 2, pp. 281–290, 2016, doi: 10.16984/saufenbilder.04840.
ISNAD Katı, Hatice et al. “Identification of Bacillus Species Isolated from Soil and Investigation of Their Biological Properties”. Sakarya University Journal of Science 20/2 (August 2016), 281-290. https://doi.org/10.16984/saufenbilder.04840.
JAMA Katı H, Karaca B, Gülşen ŞH. Identification of Bacillus species isolated from soil and investigation of their biological properties. SAUJS. 2016;20:281–290.
MLA Katı, Hatice et al. “Identification of Bacillus Species Isolated from Soil and Investigation of Their Biological Properties”. Sakarya University Journal of Science, vol. 20, no. 2, 2016, pp. 281-90, doi:10.16984/saufenbilder.04840.
Vancouver Katı H, Karaca B, Gülşen ŞH. Identification of Bacillus species isolated from soil and investigation of their biological properties. SAUJS. 2016;20(2):281-90.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.