Drosophila Melanogaster'in Biyolojik özelliklerine nanofiberin etkisi
Year 2017,
, 1608 - 1612, 01.12.2017
Eda Güneş
,
Mehmet Okan Erdal
,
Lokman Gemi
Abstract
Günümüzde nanofiber komponenler (poliakrilonitril dimetil formamit gibi)
bir çok mühendislik alanında ve gıda sektöründe kullanılmaktadır. Çevre ve
hedef olmayan organizmalar üzerindeki muhtemel etkilerin belirlenmesi
gerekmektedir. Drosophila melanogaster
Meigen (Diptera: Drosophilidae) gelişim biyolojisi ve çevre çalışmalarında çok
çalışılan model bir organizmadır. Bu çalışmada, erginler nanofiber
(elektrospinle üretilen 260 nm çap aralığına sahip PAN-DMF) kaplı diyetle
beslenerek yetiştirilmiş, ergin evreye kadar biyolojik özellikler gözlenmiştir.
Nano fiberin etkisi ile D. melanogaster'in yaşama gelişme ve hayatta
kalma oranları araştırılmıştır. Besin yüzeyi ve canlılık SEM kullanarak
görüntülenmiştir. Elde edilen sonuçlara göre, PAN-DMF kontrolle
karşılaştırıldığında besin yüzeyinin uygun olduğu görülmüş; ve böceğin gelişim
sürecini kötü etkilemediği bulunmuştur. Besinle ilişkili organizmalarda
nanofiberler kullanılabilir, fakat bu bileşenlerin çevre ve hedef olmayan
organizmalar üzerindeki etkilerinin anlaşılabilmesi için çok detaylı
çalışmalara gerek duyulmaktadır.
References
- [1] E. Demir, “Nanomateryallerin toksisite ve genotoksisite çalışmalarında bir in vivo model organizma olarak Drosophila melanogaster (meyve sineği)’in kullanılması,” Türk Bilimsel Derlemeler Dergisi, vol. 9, no. 1, pp. 01-11, 2016.
[2] KL. Dreher, “Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles,” Toxicological Sciences, vol. 77, pp. 3-5, 2004.
[3] CB. Murray, CR. Kagan and MG. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annual Review in Material Sciences, vol. 30, pp. 545–610. 2000.
[4] R. Elghanian, JJ. Storhoff, RC. Mucic, RL. Letsinger and CA. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science, vol. 277, pp. 1078-80, 1997.
[5] M. Bruchez, M. Moronne, P. Gin, S. Weiss and AP. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, pp. 2013-2016, 1998.
[6] N. Singh, B. Manshian, GJ. Jenkins, SM. Griffiths, PM. Williams, TG. Maffeis, CJ. Wright and SH. Doak, “Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials,” Biomaterials, vol. 30, pp. 3891-3914, 2009.
[7] D. Yohan and BD. Chithrani, “Applications of nanoparticles in nanomedicine,” Journal of Biomedicine and Nanotechnology, vol. 10, pp. 2371-2392, 2014.
[8] Ş. Yüksek Kaygısız, “Investigation of genotoxic potential of various sizes Fe2O3 nanoparticles with Drosophila melanogaster somatic cells and allium test methods,” Afyon Kocatepe University, Institute of Science and Technology, Department of Molecular Biology and Genetics, Doctorate Thesis, pp. 1-89, 2016.
[9] RGK. Louis Theodore, Nanotechnology/Environmental Overview, in Nanotechnology: Environmental Implications and Solutions, pp 1-60, 2005.
[10] PE. Barker, T. Butler, JM. Dawley, P. Herran, B. King, KL. Nathanson, K. Patel, J. Wedeking, H. Weiss, J. Wubinger and S. Ziesmann, “Nanotechnology Briefing Paper: Clean Water Act, in Section of Environment, Energy, and Resources,” American Bar Association, Chicago, IL, pp. 13, 2006.
[11] A. Nel, T. Xia, L. Mädler and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, pp. 622-627, 2006.
[12] U. Graf, FE. Würgler, AJ. Katz, H. Frei, H. Juan, CB. Hall and PG. Kale, “Somatic mutation and recombination test in Drosophila melanogaster,” Environmental Mutagenesis, vol. 6, pp. 153-188, 1984.
[13] B. Falakalı, “Drosophila Genetiği,” Ege Üniversitesi Basımevi Basımevi, ss. 44, Bornova-İzmir, 1990.
[14] MD. Adams, SE. Celniker, RA. Holt, CA. Evans, JD. Gocayne, PG. Amanatides et al., “The genome sequence of Drosophila melanogaster,” Science, vol. 287, no. 5461, pp. 2185-2195, 2000.
[15] MD. Rand, “Drosophotoxicology: the growing potential for Drosophila in neurotoxicology,” Neurotoxicology and Teratology, vol. 32, pp. 74-83, 2010.
[16] UB. Pandey and CD. Nichols, “Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery,” Pharmacological Reviews, vol. 63, pp. 411-436, 2011.
[17] B. Rogina, RA. Reenan, SP. Nilsen and SL. Helfand, “Extended life-span conferred by cotransporter gene mutations in Drosophila,” Biogerontology Science, vol. 290, pp. 2137-2140, 2000.
[18] C. Lesch, A. Goto, M. Lindgren, G. Bidla, MS. Dushay and U. Theopold, “A role for Hemolectin in coagulation and immunity in Drosophila melanogaster,” Developmental and Comparative Immunology, vol. 31, pp. 1255-1263, 2007.
[19] I. Uslu, “Elektrospinleme Yöntemi ile Seramik Nano Borkarbür Üretimi ve Karekterizasyonu,” ISBN 978-605-61162-0-9, Konya, 2010.
[20] GW. Snedecor and WG. Cochran, Statistical methods 6th ed. Ames. Iowa, USA, Iowa State Univ. Press., 1967.
[21] E. Güneş, “Effects of Quinoa (Chenopodioideae) on some biological traits of Drosophila melanogaster,” XXV International Congress of Entomology, Orlando/Florida ABD, 2016.
[22] MDW. Piper, W. Mair and L. Partridge, “Counting the Calories: The Role of Specific Nutrients in Extension of Life Span by Food Restriction,” Journal of Gerontolog, vol. 60A, no. 5, pp. 549-555, 2005.
[23] RL. Unckless, SM. Rottschaefer and BP. Lazzaro, “The Complex Contributions of Genetics and Nutrition to immunity in Drosophila melanogaster,” PLOS Genetics, pp. 1-26, 2015.
[24] CA. Cohen, JA. Karfakis, MD. Kurnick and B. Rzigalinski, “Cerium oxide nanoparticles reduce free radical- mediated toxicity in Drosophila melanogaster,” Journal of FASEB, vol. 22, pp. 624-1, 2008.
[25] JS. Yadav, MP. Lavanya, PP. Das, I. Bag, A. Krishnan, R. Leary, A. Bagchi, B. Jagannadh, DK. Mohapatra, MP. Bhadra and U. Bhadra, “4-N-pyridin-2- yl-benzamide nanotubes compatible with mouse stem cell and oral delivery in Drosophila,” Nanotechnology, vol. 21, pp. 155102, 2010.
[26] F. Barandeh, PL. Nguyen, R. Kumar, GJ. Iacobucci, ML. Kuznicki, A. Kosterman, EJ. Bergeyn, PN. Prasad and S. Gunawardena, “Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo,” PLoS One, vol. 7, pp. e29424, 2012.
[27] X. Han, B. Geller, K. Moniz, P. Das, AK. Chippindale and VK. Walker, “Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes,” Sciences of the Total Environment, vol. 487, pp. 822-829, 2014.
[28] B. Liu, EM. Campo and T. Bossing, “Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT) in living organisms,” PloS One, vol. 9, pp. e88681, 2014.
[29] PP. Pompa, G. Vecchio, A. Galeone, V. Brunetti, S. Sabella, G. Maiorano, A. Falqui, G. Bertoni and R. Cingolani, “In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster,” Nano Research, vol. 4, pp. 405-413, 2011.
[30] G. Vecchio, A. Galeone, V. Brunetti, G. Maiorano, L. Rizzello, S. Sabella, R. Cingolani and PP. Pompa, “Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster,” Nanomedicine, vol. 8, pp. 1-7, 2012.
[31] P. Vasseur and C. Leguille, “Defense systems of benthic invertebrates in response to environmental stressors,” Environmental Toxicology, vol. 19, pp. 433-436, 2004.
The effect of nanofiber on the biological traits of Drosophila Melanogaster
Year 2017,
, 1608 - 1612, 01.12.2017
Eda Güneş
,
Mehmet Okan Erdal
,
Lokman Gemi
Abstract
Today nanofiber components (polyacrylonitrile dimethyl
formamide etc.) are used in many engineering fields and food industry. Possible
effects are need to be identified on the environment and non-target organisms. Drosophila melanogaster Meigen (Diptera:
Drosophilidae) has
been one of the most studied organisms, working as a model in developmental
biology and environmental studies. In this study, adults were fed with
nanofiber coated diet (PAN-DMF; produced by the electrospinning, range of
diamer 260 nm), eggs were obtained from adults, and biological traits were
observed until the adult stage. The effect of nanofiber on survivorship and
development ratio of D.
melanogaster were investigated. Nutrient surface and viability were
visualized by using SEM. According to the obtained results, PAN-DMF is suited
with the nutrient surface compared to controls; and was found to have no
adverse effect on the development of insect. Nanofibers can be used in food
contact organisms, but more detailed studies would be needed to understand the
effects of these components on environment and non target organisms.
References
- [1] E. Demir, “Nanomateryallerin toksisite ve genotoksisite çalışmalarında bir in vivo model organizma olarak Drosophila melanogaster (meyve sineği)’in kullanılması,” Türk Bilimsel Derlemeler Dergisi, vol. 9, no. 1, pp. 01-11, 2016.
[2] KL. Dreher, “Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles,” Toxicological Sciences, vol. 77, pp. 3-5, 2004.
[3] CB. Murray, CR. Kagan and MG. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annual Review in Material Sciences, vol. 30, pp. 545–610. 2000.
[4] R. Elghanian, JJ. Storhoff, RC. Mucic, RL. Letsinger and CA. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science, vol. 277, pp. 1078-80, 1997.
[5] M. Bruchez, M. Moronne, P. Gin, S. Weiss and AP. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, pp. 2013-2016, 1998.
[6] N. Singh, B. Manshian, GJ. Jenkins, SM. Griffiths, PM. Williams, TG. Maffeis, CJ. Wright and SH. Doak, “Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials,” Biomaterials, vol. 30, pp. 3891-3914, 2009.
[7] D. Yohan and BD. Chithrani, “Applications of nanoparticles in nanomedicine,” Journal of Biomedicine and Nanotechnology, vol. 10, pp. 2371-2392, 2014.
[8] Ş. Yüksek Kaygısız, “Investigation of genotoxic potential of various sizes Fe2O3 nanoparticles with Drosophila melanogaster somatic cells and allium test methods,” Afyon Kocatepe University, Institute of Science and Technology, Department of Molecular Biology and Genetics, Doctorate Thesis, pp. 1-89, 2016.
[9] RGK. Louis Theodore, Nanotechnology/Environmental Overview, in Nanotechnology: Environmental Implications and Solutions, pp 1-60, 2005.
[10] PE. Barker, T. Butler, JM. Dawley, P. Herran, B. King, KL. Nathanson, K. Patel, J. Wedeking, H. Weiss, J. Wubinger and S. Ziesmann, “Nanotechnology Briefing Paper: Clean Water Act, in Section of Environment, Energy, and Resources,” American Bar Association, Chicago, IL, pp. 13, 2006.
[11] A. Nel, T. Xia, L. Mädler and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, pp. 622-627, 2006.
[12] U. Graf, FE. Würgler, AJ. Katz, H. Frei, H. Juan, CB. Hall and PG. Kale, “Somatic mutation and recombination test in Drosophila melanogaster,” Environmental Mutagenesis, vol. 6, pp. 153-188, 1984.
[13] B. Falakalı, “Drosophila Genetiği,” Ege Üniversitesi Basımevi Basımevi, ss. 44, Bornova-İzmir, 1990.
[14] MD. Adams, SE. Celniker, RA. Holt, CA. Evans, JD. Gocayne, PG. Amanatides et al., “The genome sequence of Drosophila melanogaster,” Science, vol. 287, no. 5461, pp. 2185-2195, 2000.
[15] MD. Rand, “Drosophotoxicology: the growing potential for Drosophila in neurotoxicology,” Neurotoxicology and Teratology, vol. 32, pp. 74-83, 2010.
[16] UB. Pandey and CD. Nichols, “Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery,” Pharmacological Reviews, vol. 63, pp. 411-436, 2011.
[17] B. Rogina, RA. Reenan, SP. Nilsen and SL. Helfand, “Extended life-span conferred by cotransporter gene mutations in Drosophila,” Biogerontology Science, vol. 290, pp. 2137-2140, 2000.
[18] C. Lesch, A. Goto, M. Lindgren, G. Bidla, MS. Dushay and U. Theopold, “A role for Hemolectin in coagulation and immunity in Drosophila melanogaster,” Developmental and Comparative Immunology, vol. 31, pp. 1255-1263, 2007.
[19] I. Uslu, “Elektrospinleme Yöntemi ile Seramik Nano Borkarbür Üretimi ve Karekterizasyonu,” ISBN 978-605-61162-0-9, Konya, 2010.
[20] GW. Snedecor and WG. Cochran, Statistical methods 6th ed. Ames. Iowa, USA, Iowa State Univ. Press., 1967.
[21] E. Güneş, “Effects of Quinoa (Chenopodioideae) on some biological traits of Drosophila melanogaster,” XXV International Congress of Entomology, Orlando/Florida ABD, 2016.
[22] MDW. Piper, W. Mair and L. Partridge, “Counting the Calories: The Role of Specific Nutrients in Extension of Life Span by Food Restriction,” Journal of Gerontolog, vol. 60A, no. 5, pp. 549-555, 2005.
[23] RL. Unckless, SM. Rottschaefer and BP. Lazzaro, “The Complex Contributions of Genetics and Nutrition to immunity in Drosophila melanogaster,” PLOS Genetics, pp. 1-26, 2015.
[24] CA. Cohen, JA. Karfakis, MD. Kurnick and B. Rzigalinski, “Cerium oxide nanoparticles reduce free radical- mediated toxicity in Drosophila melanogaster,” Journal of FASEB, vol. 22, pp. 624-1, 2008.
[25] JS. Yadav, MP. Lavanya, PP. Das, I. Bag, A. Krishnan, R. Leary, A. Bagchi, B. Jagannadh, DK. Mohapatra, MP. Bhadra and U. Bhadra, “4-N-pyridin-2- yl-benzamide nanotubes compatible with mouse stem cell and oral delivery in Drosophila,” Nanotechnology, vol. 21, pp. 155102, 2010.
[26] F. Barandeh, PL. Nguyen, R. Kumar, GJ. Iacobucci, ML. Kuznicki, A. Kosterman, EJ. Bergeyn, PN. Prasad and S. Gunawardena, “Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo,” PLoS One, vol. 7, pp. e29424, 2012.
[27] X. Han, B. Geller, K. Moniz, P. Das, AK. Chippindale and VK. Walker, “Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes,” Sciences of the Total Environment, vol. 487, pp. 822-829, 2014.
[28] B. Liu, EM. Campo and T. Bossing, “Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT) in living organisms,” PloS One, vol. 9, pp. e88681, 2014.
[29] PP. Pompa, G. Vecchio, A. Galeone, V. Brunetti, S. Sabella, G. Maiorano, A. Falqui, G. Bertoni and R. Cingolani, “In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster,” Nano Research, vol. 4, pp. 405-413, 2011.
[30] G. Vecchio, A. Galeone, V. Brunetti, G. Maiorano, L. Rizzello, S. Sabella, R. Cingolani and PP. Pompa, “Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster,” Nanomedicine, vol. 8, pp. 1-7, 2012.
[31] P. Vasseur and C. Leguille, “Defense systems of benthic invertebrates in response to environmental stressors,” Environmental Toxicology, vol. 19, pp. 433-436, 2004.