Research Article
BibTex RIS Cite
Year 2018, , 1765 - 1769, 01.12.2018
https://doi.org/10.16984/saufenbilder.410044

Abstract

 

References

  • Referans1: Bayram, B., Arslan, K. and Bulca, B., Generalized Spherical Surfaces in E⁴. Honam Mathematical J. 39 (2017), No. 3, 363-377.
  • Referans2: Bulca, B. and Arslan, K., Surfaces Given with the Monge Patch in E⁴, Journal of Mathematical Physics, Analysis, Geom., 9 (2013), 435-447.
  • Referans3: Chen, B.Y., Pseudo-umbilical surfaces with constant Gauss curvature, Proceedings of the Edinburgh Mathematical Society (Series 2), 18(2) (1972), 143-148.
  • Referans4: Chen, B.Y., Geometry of Submanifolds. Dekker, New York, 1973.
  • Referans5: Cipriani, N., Senovilla, J.M.M. and Veken, J.V.D., Umbilical Properties of Spacelike co-dimension two Submanifolds, Results Math. (2017), Online First. DOI 10.1007/s00025-016-0640-x.
  • Referans6: Do Carmo, M., Cheung, L.F. and Santos, W., On the compactness of constant mean curvature hypersurfaces with finite total curvature. Arch. Math. 73 (1999), 216-222.
  • Referans7: Enomoto, K., Umbilical Points on Surfaces in Rⁿ, Nagoya Math. J.,100 (1985), 135-143.

On Total Shear Curvature of Surfaces in E^{n+2}

Year 2018, , 1765 - 1769, 01.12.2018
https://doi.org/10.16984/saufenbilder.410044

Abstract

In the present study we consider surfaces in Euclidean (n+2)-space Eⁿ⁺². Firstly, we introduce some basic concepts of second fundamental form and curvatures of the surfaces in Eⁿ⁺². Further, we obtained some basic properties of surfaces in Eⁿ⁺² and some results related with their total shear curvatures. Finally, we give an example of generalized spherical surfaces in Euclidean 4-space E⁴ with vanishing shear curvature.

References

  • Referans1: Bayram, B., Arslan, K. and Bulca, B., Generalized Spherical Surfaces in E⁴. Honam Mathematical J. 39 (2017), No. 3, 363-377.
  • Referans2: Bulca, B. and Arslan, K., Surfaces Given with the Monge Patch in E⁴, Journal of Mathematical Physics, Analysis, Geom., 9 (2013), 435-447.
  • Referans3: Chen, B.Y., Pseudo-umbilical surfaces with constant Gauss curvature, Proceedings of the Edinburgh Mathematical Society (Series 2), 18(2) (1972), 143-148.
  • Referans4: Chen, B.Y., Geometry of Submanifolds. Dekker, New York, 1973.
  • Referans5: Cipriani, N., Senovilla, J.M.M. and Veken, J.V.D., Umbilical Properties of Spacelike co-dimension two Submanifolds, Results Math. (2017), Online First. DOI 10.1007/s00025-016-0640-x.
  • Referans6: Do Carmo, M., Cheung, L.F. and Santos, W., On the compactness of constant mean curvature hypersurfaces with finite total curvature. Arch. Math. 73 (1999), 216-222.
  • Referans7: Enomoto, K., Umbilical Points on Surfaces in Rⁿ, Nagoya Math. J.,100 (1985), 135-143.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Kadri Arslan

Betül Bulca

Publication Date December 1, 2018
Submission Date March 27, 2018
Acceptance Date May 29, 2018
Published in Issue Year 2018

Cite

APA Arslan, K., & Bulca, B. (2018). On Total Shear Curvature of Surfaces in E^{n+2}. Sakarya University Journal of Science, 22(6), 1765-1769. https://doi.org/10.16984/saufenbilder.410044
AMA Arslan K, Bulca B. On Total Shear Curvature of Surfaces in E^{n+2}. SAUJS. December 2018;22(6):1765-1769. doi:10.16984/saufenbilder.410044
Chicago Arslan, Kadri, and Betül Bulca. “On Total Shear Curvature of Surfaces in E^{n+2}”. Sakarya University Journal of Science 22, no. 6 (December 2018): 1765-69. https://doi.org/10.16984/saufenbilder.410044.
EndNote Arslan K, Bulca B (December 1, 2018) On Total Shear Curvature of Surfaces in E^{n+2}. Sakarya University Journal of Science 22 6 1765–1769.
IEEE K. Arslan and B. Bulca, “On Total Shear Curvature of Surfaces in E^{n+2}”, SAUJS, vol. 22, no. 6, pp. 1765–1769, 2018, doi: 10.16984/saufenbilder.410044.
ISNAD Arslan, Kadri - Bulca, Betül. “On Total Shear Curvature of Surfaces in E^{n+2}”. Sakarya University Journal of Science 22/6 (December 2018), 1765-1769. https://doi.org/10.16984/saufenbilder.410044.
JAMA Arslan K, Bulca B. On Total Shear Curvature of Surfaces in E^{n+2}. SAUJS. 2018;22:1765–1769.
MLA Arslan, Kadri and Betül Bulca. “On Total Shear Curvature of Surfaces in E^{n+2}”. Sakarya University Journal of Science, vol. 22, no. 6, 2018, pp. 1765-9, doi:10.16984/saufenbilder.410044.
Vancouver Arslan K, Bulca B. On Total Shear Curvature of Surfaces in E^{n+2}. SAUJS. 2018;22(6):1765-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.