Research Article
BibTex RIS Cite
Year 2019, , 549 - 553, 01.08.2019
https://doi.org/10.16984/saufenbilder.484564

Abstract

References

  • acar1 : T. Acar, A. Aral and I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1) (2014) 27-41.
  • gulsum : T. Acar, G. Ulusoy, Approximation by modified Szasz Durrmeyer operators, Period Math Hung, 72 (2016) 64-75.
  • baskakov : V. Baskakov, An instance of a sequence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk SSSR 113 (2) (1957) 249-251.
  • acar2 : T. Acar, V. Gupta and A. Aral, Rate of Convergence for Generalized Szász Operators, Bulletin of Mathematical Science 1 (1) (2011) 99-113.
  • aral1 : A. Aral, D. Inoan and I. Raşa, On the Generalized Szász-Mirakyan Operators, Results in Mathematics 65 (2014) 441-452.
  • aral2 : A. Aral, V. Gupta, Generalized Szász Durrmeyer Operators, Lobachevskii J. Math. 32 (1) (2011) 23--31.
  • cardenes : D. Cárdenas-Morales, P. Garrancho, I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62 (2011) 158-163.
  • gadziev1 : A. D. Gadziev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR, 218 (1974) 1001-1004. Also in Soviet Math Dokl.15 (1974), 1433-1436 (in English).
  • gadziev2 : A. D. Gadziev, Theorems of the type of P. P. Korovkin's theorems (in Russian), Math. Z. 205 (1976), 781-786 translated in Math. Notes, 20 (5-6) (1977), 995-998.
  • gupta1 : V. Gupta, U. Abel, On the rate of convergence of Bézier variant of Szász-Durrmeyer operators, Anal. Theory Appl. 19 (1) (2003) 81-88.
  • holhos : A. Holhos, Quantitative estimates for positive linear operators in weighted space, General Math. 16 (4) (2008) 99-110.
  • mediha : Prashantkumar Patel, Vishnu Narayan Mishra and Mediha Örkcü, Some approximation properties of the generalized Baskakov operators, Journal of Interdisciplinary Mathematics, 21 (3) (2018) 611-622.

On the Generalized Baskakov Durrmeyer Operators

Year 2019, , 549 - 553, 01.08.2019
https://doi.org/10.16984/saufenbilder.484564

Abstract

The main object of this paper is to construct Baskakov Durrmeyer type operators such that their construction depends on a function ρ. Using the weighted modulus of continuity, we show the uniform convergence of the operators. Moreover we obtain pointwise convergence of B_{n}^{ρ} by obtaining Voronovskaya type theorem. All results show that our new operators are sensitive to the rate of convergence to f, depending on our selection of ρ.

References

  • acar1 : T. Acar, A. Aral and I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1) (2014) 27-41.
  • gulsum : T. Acar, G. Ulusoy, Approximation by modified Szasz Durrmeyer operators, Period Math Hung, 72 (2016) 64-75.
  • baskakov : V. Baskakov, An instance of a sequence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk SSSR 113 (2) (1957) 249-251.
  • acar2 : T. Acar, V. Gupta and A. Aral, Rate of Convergence for Generalized Szász Operators, Bulletin of Mathematical Science 1 (1) (2011) 99-113.
  • aral1 : A. Aral, D. Inoan and I. Raşa, On the Generalized Szász-Mirakyan Operators, Results in Mathematics 65 (2014) 441-452.
  • aral2 : A. Aral, V. Gupta, Generalized Szász Durrmeyer Operators, Lobachevskii J. Math. 32 (1) (2011) 23--31.
  • cardenes : D. Cárdenas-Morales, P. Garrancho, I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62 (2011) 158-163.
  • gadziev1 : A. D. Gadziev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR, 218 (1974) 1001-1004. Also in Soviet Math Dokl.15 (1974), 1433-1436 (in English).
  • gadziev2 : A. D. Gadziev, Theorems of the type of P. P. Korovkin's theorems (in Russian), Math. Z. 205 (1976), 781-786 translated in Math. Notes, 20 (5-6) (1977), 995-998.
  • gupta1 : V. Gupta, U. Abel, On the rate of convergence of Bézier variant of Szász-Durrmeyer operators, Anal. Theory Appl. 19 (1) (2003) 81-88.
  • holhos : A. Holhos, Quantitative estimates for positive linear operators in weighted space, General Math. 16 (4) (2008) 99-110.
  • mediha : Prashantkumar Patel, Vishnu Narayan Mishra and Mediha Örkcü, Some approximation properties of the generalized Baskakov operators, Journal of Interdisciplinary Mathematics, 21 (3) (2018) 611-622.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Gülsüm Ulusoy 0000-0003-2755-2334

Publication Date August 1, 2019
Submission Date November 17, 2018
Acceptance Date January 14, 2019
Published in Issue Year 2019

Cite

APA Ulusoy, G. (2019). On the Generalized Baskakov Durrmeyer Operators. Sakarya University Journal of Science, 23(4), 549-553. https://doi.org/10.16984/saufenbilder.484564
AMA Ulusoy G. On the Generalized Baskakov Durrmeyer Operators. SAUJS. August 2019;23(4):549-553. doi:10.16984/saufenbilder.484564
Chicago Ulusoy, Gülsüm. “On the Generalized Baskakov Durrmeyer Operators”. Sakarya University Journal of Science 23, no. 4 (August 2019): 549-53. https://doi.org/10.16984/saufenbilder.484564.
EndNote Ulusoy G (August 1, 2019) On the Generalized Baskakov Durrmeyer Operators. Sakarya University Journal of Science 23 4 549–553.
IEEE G. Ulusoy, “On the Generalized Baskakov Durrmeyer Operators”, SAUJS, vol. 23, no. 4, pp. 549–553, 2019, doi: 10.16984/saufenbilder.484564.
ISNAD Ulusoy, Gülsüm. “On the Generalized Baskakov Durrmeyer Operators”. Sakarya University Journal of Science 23/4 (August 2019), 549-553. https://doi.org/10.16984/saufenbilder.484564.
JAMA Ulusoy G. On the Generalized Baskakov Durrmeyer Operators. SAUJS. 2019;23:549–553.
MLA Ulusoy, Gülsüm. “On the Generalized Baskakov Durrmeyer Operators”. Sakarya University Journal of Science, vol. 23, no. 4, 2019, pp. 549-53, doi:10.16984/saufenbilder.484564.
Vancouver Ulusoy G. On the Generalized Baskakov Durrmeyer Operators. SAUJS. 2019;23(4):549-53.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.