Research Article
BibTex RIS Cite

Coefficient inequalities for Janowski type close-to-convex functions associated with Ruscheweyh Derivative Operator

Year 2019, , 714 - 717, 01.10.2019
https://doi.org/10.16984/saufenbilder.511321

Abstract

The aim of this paper  is to
introduce a new subclasses of the Janowski type close-to-convex functions
defined by Ruscheweyh derivative operator and obtain coefficient bounds
belonging to this class. 

References

  • [1] R. M. Goel, B. C. Mehrok, “A subclass of starlike functions with respect to symmetric points” , Tamkang Journal of Mathematics, Vol. 13, No. 1, 11–24, 1982. [2] W. Janowski, “Some extremal problems for certain families of analytic functions”, Ann. Pol. Math., 28, 297-326, 1973.[3] W. Kaplan, “Close-to-convex schlicht functions”, Michigan Math. J., 1, 169-185, 1952.[4] M. O. Reade, “ On close-to-convex univalent functions”, Michigan Math. J., Volume 3, Issue 1, 59-62, 1955.[5] S. Ruscheweyh, “New criteria for univalent functions”, Proc. Amer. Math. Soc., 49, 109- 115, 1975.
Year 2019, , 714 - 717, 01.10.2019
https://doi.org/10.16984/saufenbilder.511321

Abstract

References

  • [1] R. M. Goel, B. C. Mehrok, “A subclass of starlike functions with respect to symmetric points” , Tamkang Journal of Mathematics, Vol. 13, No. 1, 11–24, 1982. [2] W. Janowski, “Some extremal problems for certain families of analytic functions”, Ann. Pol. Math., 28, 297-326, 1973.[3] W. Kaplan, “Close-to-convex schlicht functions”, Michigan Math. J., 1, 169-185, 1952.[4] M. O. Reade, “ On close-to-convex univalent functions”, Michigan Math. J., Volume 3, Issue 1, 59-62, 1955.[5] S. Ruscheweyh, “New criteria for univalent functions”, Proc. Amer. Math. Soc., 49, 109- 115, 1975.
There are 1 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Öznur Özkan Kılıç 0000-0003-4209-9320

Publication Date October 1, 2019
Submission Date January 10, 2019
Acceptance Date January 28, 2019
Published in Issue Year 2019

Cite

APA Özkan Kılıç, Ö. (2019). Coefficient inequalities for Janowski type close-to-convex functions associated with Ruscheweyh Derivative Operator. Sakarya University Journal of Science, 23(5), 714-717. https://doi.org/10.16984/saufenbilder.511321
AMA Özkan Kılıç Ö. Coefficient inequalities for Janowski type close-to-convex functions associated with Ruscheweyh Derivative Operator. SAUJS. October 2019;23(5):714-717. doi:10.16984/saufenbilder.511321
Chicago Özkan Kılıç, Öznur. “Coefficient Inequalities for Janowski Type Close-to-Convex Functions Associated With Ruscheweyh Derivative Operator”. Sakarya University Journal of Science 23, no. 5 (October 2019): 714-17. https://doi.org/10.16984/saufenbilder.511321.
EndNote Özkan Kılıç Ö (October 1, 2019) Coefficient inequalities for Janowski type close-to-convex functions associated with Ruscheweyh Derivative Operator. Sakarya University Journal of Science 23 5 714–717.
IEEE Ö. Özkan Kılıç, “Coefficient inequalities for Janowski type close-to-convex functions associated with Ruscheweyh Derivative Operator”, SAUJS, vol. 23, no. 5, pp. 714–717, 2019, doi: 10.16984/saufenbilder.511321.
ISNAD Özkan Kılıç, Öznur. “Coefficient Inequalities for Janowski Type Close-to-Convex Functions Associated With Ruscheweyh Derivative Operator”. Sakarya University Journal of Science 23/5 (October 2019), 714-717. https://doi.org/10.16984/saufenbilder.511321.
JAMA Özkan Kılıç Ö. Coefficient inequalities for Janowski type close-to-convex functions associated with Ruscheweyh Derivative Operator. SAUJS. 2019;23:714–717.
MLA Özkan Kılıç, Öznur. “Coefficient Inequalities for Janowski Type Close-to-Convex Functions Associated With Ruscheweyh Derivative Operator”. Sakarya University Journal of Science, vol. 23, no. 5, 2019, pp. 714-7, doi:10.16984/saufenbilder.511321.
Vancouver Özkan Kılıç Ö. Coefficient inequalities for Janowski type close-to-convex functions associated with Ruscheweyh Derivative Operator. SAUJS. 2019;23(5):714-7.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.