Research Article
BibTex RIS Cite
Year 2021, , 129 - 134, 01.02.2021
https://doi.org/10.16984/saufenbilder.650379

Abstract

References

  • [1] el-R. Kenawy, S.D. Worley, and R. Broughton, “The chemistry and applications of antimicrobial polymers: A state-of-the-art review,” Biomacromolecules, vol. 8, no.5, pp. 1359-1384, 2007.
  • [2] A.R. Sahahverdi, A. Fakhimi, H.R. Sahahverdi, and S. Minaian, “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 3, pp. 168-171, 2007.
  • [3] S.K. Bhullar, D. Rana, B.K. Ozsel, R. Yadav, G. Kaur, M. Chintamaneni, H.S. Buttar, M.B.G. Jun and M. Ramalingam, “A Comparative Study of the Antibacterial Activity of Rosemary Extract Blended with Polymeric Biomaterials”, Journal of Bionanoscience, vol. 10, pp. 326–330, 2016.
  • [4] A. Solar, M. Colarič, V. Usenik, and F. Stampar, “Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L.),” Plant Science, vol. 170, pp. 453-461, 2006.
  • [5] T. Zmantar, H. Miladi, B. Kouidhi, Y. Chaabouni, R.B. Slama, A. Bakhrouf, K. Mahdouani and K. Chaieb, “Use of juglone as antibacterial and potential efflux pump inhibitors in Staphylococcus aureus isolated from the oral cavity”, Microbial Pathogenesis, vol. 101, pp. 44-49, 2016.
  • [6] M. Kılınç and H.G. Kutbay, “Bitki ekolojisi,” Palme Publication, pp. 134-135, 2004.
  • [7] J. Velíšek, J. Davídek, and K. Cejpek, “Biosynthesis of food constituents: Natural pigments. Part 1-a Review,” Czech J. Food Sci., vol. 25, no. 6, pp. 291-315, 2007.
  • [8] M.P. Strugstad and S. Despotovski., “A Summary of Extraction, Synthesis, Properties, and Potential Uses of Juglone: A Literature Review”, Journal of Ecosystems and Management, vol. 13, no. 3, pp. 1–16, 2012.
  • [9] M.T. Paulsen and M. Ljungman, “The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts,” Toxicology and Applied Pharmacology, vol. 209, pp. 1-9, 2005.
  • [10] M. Saberian, H. Hamzeiy, A. Aghanejad and D. Asgari, “Aptamer-based nanosensors: juglone as an attached-redox molecule for detection of small molecules,” BioImpacts, vol. 1, no. 1, pp. 31-36, 2011.
  • [11] U. Olgun, K. Tunç and V. Özaslan, “Preparation of antimicrobial polycaprolactone silica composite films with nanosilver rods and triclosan using roll-milling method,” Polym. Adv. Technol., vol. 22, pp. 232–236, 2011.
  • [12] U. Olgun, K. Tunç and A. Hoş, “Preparation and antibacterial properties of nano biocomposite Poly(ε-caprolactone)-SiO2 films with nanosilver,” J Polym Res, vol. 26, no. 24, 2019.
  • [13] K. Simpson, “Using silver to fight microbial attack,” Plastics Additives & Compounding, pp. 32-35, 2003.
  • [14] M. Mirjalili and M. Abbasipour, “Comparison between antibacterial activity of some natural dyes and silver nanoparticles,” Journal of Nanostructure in Chemistry, vol. 3, no. 37, pp. 1-3, 2013.
  • [15] A.C.V. Solano and C.R. Gante “Two Different Processes to Obtain Antimicrobial Packaging Containing Natural Oils”, Food Bioprocess Technol, vol. 5, pp. 2522–2528, 2012.
  • [16] T. Huang, Y. Qian, J. Wei and C. Zhou, “Polymeric Antimicrobial Food Packaging and Its Applications”, Polymers, vol. 11, no. 560, 2019.
  • [17] C. Pérez-Pérez, C. Regalado-González, C.A. Rodríguez-Rodríguez, J.R. Barbosa-Rodríguez and F. Villaseñor-Ortega, Incorporation of antimicrobial agents in food packaging films and coatings, Ramón Gerardo Guevara-González and Irineo Torres-Pacheco (eds), Advances in Agricultural and Food Biotechnology, pp. 193-216, Research Signpost, Kerala, India, 2006.
  • [18] D. Mondal, B. Bhowmick, D. Maity, M.R. Mollick, D. Rana, V. Rangarajan, R. Sen and D. Chattopadhyay, Investigation on Sodium Benzoate Release from Poly(Butylene Adipate-Co-Terephthalate)/Organoclay/Sodium Benzoate Based Nanocomposite Film and Their Antimicrobial Activity, Journal of Food Science, vol. 80, no. 3, 2015.
  • [19] M. Zhang, X. Gao, H. Zhang, H. Liu, J. Jin, W. Yang and Y. Xie, “Development and antilisterial activity of PE-based biological preservative films incorporating plantaricin BM-1”, FEMS Microbiology Letters, vol. 364, no. 7 2017.
  • [20] J. Sangsuwan, N. Rattanapanone and I. Pongsirikul, “Development of active chitosan films incorporating potassium sorbate or vanillin to extend the shelf life of butter cake” International Journal of Food Science and Technology, doi:10.1111/ijfs.12631, 2014.
  • [21] L. A. Cestari, R. C. Gaiotto, J. L. Antigo, M. R. S. Scapim, G. S. Madrona, F. Yamashita, M. S. S. Pozza and I. N. Prado, “Effect of active packaging on low-sodium restructured chicken steaks”, J Food Sci Technol, vol. 52 no. 6, pp. 3376–3382, 2015.
  • [22] T. Mehdizadeh, H. Tajik, S.M.R. Rohani and A.R. Oromiehie, “Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil”, Veterinary Research Forum, vol. 3, no. 3, pp. 167-173, 2012.

Investigation of Antibacterial Activity of Juglone – Poly(ε-caprolactone) - Alumina Composite Films

Year 2021, , 129 - 134, 01.02.2021
https://doi.org/10.16984/saufenbilder.650379

Abstract

The aim of this study was to produce Juglone – Poly(ε-caprolactone)(PCL)
- Alumina (Al2O3) composite films and determine their
antibacterial properties. PCL-Al2O3 composite films
containing 1% and 5% juglone were prepared using roll mill method. Juglone –
Poly(ε-caprolactone)(PCL) - Alumina (Al2O3) composite
films were found to have 100% antibacterial effect on Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922. It is thought that Juglone-PCL-Al2O3
composite films may have potential application in food packaging and personal
care products in order to ensure microbial safety and extend shelf life of food
and personal care products. 

References

  • [1] el-R. Kenawy, S.D. Worley, and R. Broughton, “The chemistry and applications of antimicrobial polymers: A state-of-the-art review,” Biomacromolecules, vol. 8, no.5, pp. 1359-1384, 2007.
  • [2] A.R. Sahahverdi, A. Fakhimi, H.R. Sahahverdi, and S. Minaian, “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 3, pp. 168-171, 2007.
  • [3] S.K. Bhullar, D. Rana, B.K. Ozsel, R. Yadav, G. Kaur, M. Chintamaneni, H.S. Buttar, M.B.G. Jun and M. Ramalingam, “A Comparative Study of the Antibacterial Activity of Rosemary Extract Blended with Polymeric Biomaterials”, Journal of Bionanoscience, vol. 10, pp. 326–330, 2016.
  • [4] A. Solar, M. Colarič, V. Usenik, and F. Stampar, “Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L.),” Plant Science, vol. 170, pp. 453-461, 2006.
  • [5] T. Zmantar, H. Miladi, B. Kouidhi, Y. Chaabouni, R.B. Slama, A. Bakhrouf, K. Mahdouani and K. Chaieb, “Use of juglone as antibacterial and potential efflux pump inhibitors in Staphylococcus aureus isolated from the oral cavity”, Microbial Pathogenesis, vol. 101, pp. 44-49, 2016.
  • [6] M. Kılınç and H.G. Kutbay, “Bitki ekolojisi,” Palme Publication, pp. 134-135, 2004.
  • [7] J. Velíšek, J. Davídek, and K. Cejpek, “Biosynthesis of food constituents: Natural pigments. Part 1-a Review,” Czech J. Food Sci., vol. 25, no. 6, pp. 291-315, 2007.
  • [8] M.P. Strugstad and S. Despotovski., “A Summary of Extraction, Synthesis, Properties, and Potential Uses of Juglone: A Literature Review”, Journal of Ecosystems and Management, vol. 13, no. 3, pp. 1–16, 2012.
  • [9] M.T. Paulsen and M. Ljungman, “The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts,” Toxicology and Applied Pharmacology, vol. 209, pp. 1-9, 2005.
  • [10] M. Saberian, H. Hamzeiy, A. Aghanejad and D. Asgari, “Aptamer-based nanosensors: juglone as an attached-redox molecule for detection of small molecules,” BioImpacts, vol. 1, no. 1, pp. 31-36, 2011.
  • [11] U. Olgun, K. Tunç and V. Özaslan, “Preparation of antimicrobial polycaprolactone silica composite films with nanosilver rods and triclosan using roll-milling method,” Polym. Adv. Technol., vol. 22, pp. 232–236, 2011.
  • [12] U. Olgun, K. Tunç and A. Hoş, “Preparation and antibacterial properties of nano biocomposite Poly(ε-caprolactone)-SiO2 films with nanosilver,” J Polym Res, vol. 26, no. 24, 2019.
  • [13] K. Simpson, “Using silver to fight microbial attack,” Plastics Additives & Compounding, pp. 32-35, 2003.
  • [14] M. Mirjalili and M. Abbasipour, “Comparison between antibacterial activity of some natural dyes and silver nanoparticles,” Journal of Nanostructure in Chemistry, vol. 3, no. 37, pp. 1-3, 2013.
  • [15] A.C.V. Solano and C.R. Gante “Two Different Processes to Obtain Antimicrobial Packaging Containing Natural Oils”, Food Bioprocess Technol, vol. 5, pp. 2522–2528, 2012.
  • [16] T. Huang, Y. Qian, J. Wei and C. Zhou, “Polymeric Antimicrobial Food Packaging and Its Applications”, Polymers, vol. 11, no. 560, 2019.
  • [17] C. Pérez-Pérez, C. Regalado-González, C.A. Rodríguez-Rodríguez, J.R. Barbosa-Rodríguez and F. Villaseñor-Ortega, Incorporation of antimicrobial agents in food packaging films and coatings, Ramón Gerardo Guevara-González and Irineo Torres-Pacheco (eds), Advances in Agricultural and Food Biotechnology, pp. 193-216, Research Signpost, Kerala, India, 2006.
  • [18] D. Mondal, B. Bhowmick, D. Maity, M.R. Mollick, D. Rana, V. Rangarajan, R. Sen and D. Chattopadhyay, Investigation on Sodium Benzoate Release from Poly(Butylene Adipate-Co-Terephthalate)/Organoclay/Sodium Benzoate Based Nanocomposite Film and Their Antimicrobial Activity, Journal of Food Science, vol. 80, no. 3, 2015.
  • [19] M. Zhang, X. Gao, H. Zhang, H. Liu, J. Jin, W. Yang and Y. Xie, “Development and antilisterial activity of PE-based biological preservative films incorporating plantaricin BM-1”, FEMS Microbiology Letters, vol. 364, no. 7 2017.
  • [20] J. Sangsuwan, N. Rattanapanone and I. Pongsirikul, “Development of active chitosan films incorporating potassium sorbate or vanillin to extend the shelf life of butter cake” International Journal of Food Science and Technology, doi:10.1111/ijfs.12631, 2014.
  • [21] L. A. Cestari, R. C. Gaiotto, J. L. Antigo, M. R. S. Scapim, G. S. Madrona, F. Yamashita, M. S. S. Pozza and I. N. Prado, “Effect of active packaging on low-sodium restructured chicken steaks”, J Food Sci Technol, vol. 52 no. 6, pp. 3376–3382, 2015.
  • [22] T. Mehdizadeh, H. Tajik, S.M.R. Rohani and A.R. Oromiehie, “Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil”, Veterinary Research Forum, vol. 3, no. 3, pp. 167-173, 2012.
There are 22 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ayşegül Hoş 0000-0001-5605-6159

Uğursoy Olgun 0000-0001-7104-9926

Kenan Tunç 0000-0002-9888-1453

Publication Date February 1, 2021
Submission Date November 24, 2019
Acceptance Date November 24, 2020
Published in Issue Year 2021

Cite

APA Hoş, A., Olgun, U., & Tunç, K. (2021). Investigation of Antibacterial Activity of Juglone – Poly(ε-caprolactone) - Alumina Composite Films. Sakarya University Journal of Science, 25(1), 129-134. https://doi.org/10.16984/saufenbilder.650379
AMA Hoş A, Olgun U, Tunç K. Investigation of Antibacterial Activity of Juglone – Poly(ε-caprolactone) - Alumina Composite Films. SAUJS. February 2021;25(1):129-134. doi:10.16984/saufenbilder.650379
Chicago Hoş, Ayşegül, Uğursoy Olgun, and Kenan Tunç. “Investigation of Antibacterial Activity of Juglone – Poly(ε-Caprolactone) - Alumina Composite Films”. Sakarya University Journal of Science 25, no. 1 (February 2021): 129-34. https://doi.org/10.16984/saufenbilder.650379.
EndNote Hoş A, Olgun U, Tunç K (February 1, 2021) Investigation of Antibacterial Activity of Juglone – Poly(ε-caprolactone) - Alumina Composite Films. Sakarya University Journal of Science 25 1 129–134.
IEEE A. Hoş, U. Olgun, and K. Tunç, “Investigation of Antibacterial Activity of Juglone – Poly(ε-caprolactone) - Alumina Composite Films”, SAUJS, vol. 25, no. 1, pp. 129–134, 2021, doi: 10.16984/saufenbilder.650379.
ISNAD Hoş, Ayşegül et al. “Investigation of Antibacterial Activity of Juglone – Poly(ε-Caprolactone) - Alumina Composite Films”. Sakarya University Journal of Science 25/1 (February 2021), 129-134. https://doi.org/10.16984/saufenbilder.650379.
JAMA Hoş A, Olgun U, Tunç K. Investigation of Antibacterial Activity of Juglone – Poly(ε-caprolactone) - Alumina Composite Films. SAUJS. 2021;25:129–134.
MLA Hoş, Ayşegül et al. “Investigation of Antibacterial Activity of Juglone – Poly(ε-Caprolactone) - Alumina Composite Films”. Sakarya University Journal of Science, vol. 25, no. 1, 2021, pp. 129-34, doi:10.16984/saufenbilder.650379.
Vancouver Hoş A, Olgun U, Tunç K. Investigation of Antibacterial Activity of Juglone – Poly(ε-caprolactone) - Alumina Composite Films. SAUJS. 2021;25(1):129-34.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.