Research Article
BibTex RIS Cite

On the Analysis of Secrecy Outage Probability Using Average Channel Capacity

Year 2020, , 248 - 256, 01.02.2020
https://doi.org/10.16984/saufenbilder.655465

Abstract

In this article, we analyze the outage probability of physically secure wireless signal transmission in fading envi-ronments where both primary and eavesdropper channels are subject to generalized fading. We propose a novel approach using the average channel capacity of the primary channel and that of the eavesdropper channel to the outage probability of physically secure wireless signaling.

Supporting Institution

YILDIZ TECHNICAL UNIVERSITY

Thanks

This work was supported by YILDIZ TECHNICAL UNIVERSITY.

References

  • A. D. Wyner, “The wire‐tap channel,” Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, 1975.
  • I. Csiszár, and J. Körner, “Broadcast channels with confidential messages,” IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 339–348, 1978.
  • S. Leung-Yan-Cheong, and M. Hellman. “The Gaussian wire-tap channel,” IEEE Transactions on Information Theory, vol. 24, no. 4, pp. 451–456, (1978).
  • M. Bloch, J. Barros, M. R. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Transactions on Information Theory, vol. 54, no. 6, pp. 2515–2534, 2008.
  • M. Z. I. Sarkar, T. Ratnarajah, and M. Sellathurai, “Secrecy capacity of Nakagami-𝑚 fading wireless channels in the presence of multiple eavesdroppers,” in Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, USA, Nov. 2009, pp. 829–833.
  • X. Liu, “Outage probability of secrecy capacity over correlated log–normal fading channels,” IEEE Communications Letters, vol. 17, no. 2, pp. 289–292, Feb. 2013.
  • D.-B. Ha, T. Q. Duong, D.-D. Tran, H.–J. Zepernick, and T. T. Vu, “Physical layer secrecy performance over Rayleigh/Rician fading channels,” in International Conference on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, Oct. 2014, pp. 113–118.
  • S. Belmoubarik, G. Aniba, and B. Elgraini, “Secrecy capacity of a Nakagami-m fading channel in the presence of cooperative eavesdroppers,” in IEEE Mediterranean Microwave Symposium (MMS), Marrakech, Morocco, Dec. 2014, pp. 1–6.
  • H. Lei, C. Gao, Y. Guo, and G. Pan, “On physical layer security over generalized gamma fading channels,” IEEE Communications Letters, vol. 19, no. 7, pp. 1257–1260, July 2015.
  • L. Kong, H. Tran, and G. Kaddoum, “Performance analysis of physical layer security over α–μ fading channel,” Electronics Letters, vol. 52, no. 1, pp. 45–47, 2016.
  • H. Lei, H. Zhang, I. S. Ansari, C. Gao., Y. Guo, G. Pan, and K. A. Qaraqe, “Performance analysis of physical layer security over generalized–𝐾 fading channels using a mixture gamma distribution,” IEEE Communications Letters, vol. 20, no. 2, pp. 408–411, Feb. 2016.
  • N. Bhargav, S. L. Cotton, and D. E. Simmons, “Secrecy capacity analysis over κ–μ fading channels: Theory and applications,” IEEE Transactions on Communications, vol. 64, no. 7, pp. 3011–3024, July 2016.
  • S. Iwata, T. Ohtsuki, and P. Y. Kam, “Secure outage probability over κ–μ fading channels,” in IEEE International Conference on Communications (ICC), Paris, France, May 2017, pp. 1–6.
  • G. C. Alexandropoulos, and K. P. Peppas, “Secrecy outage analysis over correlated composite Nakagami–m/Gamma fading channels,” IEEE. Communications Letters, vol. 22. no. 1, pp. 77–80, Jan. 2018.
  • L. Kong and G. Kaddoum, “On physical layer security over the Fisher-Snedecor F wiretap Fading Channels,” IEEE Access, vol. 6, pp. 39466–39472, 2018.
  • L. Kong, S. Vuppala, and G. Kaddoum, “Secrecy analysis of random MIMO wireless networks Over α–μ Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11654–11666, 2018.
  • H. Zhao, Y. Liu, A. Sultan-Salem, and M.–S. Alouini, “A simple evaluation for the secrecy outage probability over generalized-K fading channels,” IEEE Communications Letters, vol. 23, no. 9, pp. 1479-1483, 2019.
  • D. Zwillinger, CRC Standard Mathematical Tables and Formulae, 31st ed. Boca Raton, FL: Chapman & Hall/CRC, 2003.
  • Wolfram Research, Mathematica Edition: Version 8.0. Champaign, Illinois: Wolfram Research, Inc., 2010.
  • F. Yilmaz, “On the relationships between average channel capacity, average bit error rate, outage probability and outage capacity over additive white Gaussian noise channels,” arXiv preprint arXiv:1907.06634, 2019.
  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed. New York: Dover Publications, 1972
  • F. Yilmaz, and M.-S. Alouini, “A unified MGF-based capacity analysis of diversity combiners over generalized fading channels,” IEEE Transactions on Communications, vol. 60, no. 3, pp. 862-875, 2012.
  • F. Yilmaz, and M.-S. Alouini, “Extended generalized-K (EGK): A new simple and general model for composite fading channels,” arXiv preprint arXiv:1012.2598, 2010.
  • F. Yilmaz, and M.-S. Alouini, “A new simple model for composite fading channels: Second order statistics and channel capacity,” in International Symposium on Wireless Communication Systems (ISWCS), York, UK, Sep. 2010, pp. 676-680.
  • M. A. Chaudhry and S. M. Zubair, On a Class of Incom-plete Gamma Functions with Applications. Boca Raton-London-New York Washington, D.C.: Chapman & Hall/CRC, 2002.
  • A. Kilbas and M. Saigo, H-Transforms: Theory and Applications. Boca Raton, FL: CRC Press LLC, 2004.
  • A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and Applications, 1st ed. Dordrecht, Heidelberg, London, New York: Springer Science, 2009.
  • A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integral and Series: Volume 3, More Special Functions. CRC Press Inc., 1990.
  • N. C. Sagias, G. S. Tombras, and G. K. Karagiannidis, “New results for the Shannon channel capacity in generalized fading channels,” IEEE Communications Letters, vol. 9, no. 2, pp. 97–99, Feb. 2005.
Year 2020, , 248 - 256, 01.02.2020
https://doi.org/10.16984/saufenbilder.655465

Abstract

References

  • A. D. Wyner, “The wire‐tap channel,” Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, 1975.
  • I. Csiszár, and J. Körner, “Broadcast channels with confidential messages,” IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 339–348, 1978.
  • S. Leung-Yan-Cheong, and M. Hellman. “The Gaussian wire-tap channel,” IEEE Transactions on Information Theory, vol. 24, no. 4, pp. 451–456, (1978).
  • M. Bloch, J. Barros, M. R. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Transactions on Information Theory, vol. 54, no. 6, pp. 2515–2534, 2008.
  • M. Z. I. Sarkar, T. Ratnarajah, and M. Sellathurai, “Secrecy capacity of Nakagami-𝑚 fading wireless channels in the presence of multiple eavesdroppers,” in Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, USA, Nov. 2009, pp. 829–833.
  • X. Liu, “Outage probability of secrecy capacity over correlated log–normal fading channels,” IEEE Communications Letters, vol. 17, no. 2, pp. 289–292, Feb. 2013.
  • D.-B. Ha, T. Q. Duong, D.-D. Tran, H.–J. Zepernick, and T. T. Vu, “Physical layer secrecy performance over Rayleigh/Rician fading channels,” in International Conference on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, Oct. 2014, pp. 113–118.
  • S. Belmoubarik, G. Aniba, and B. Elgraini, “Secrecy capacity of a Nakagami-m fading channel in the presence of cooperative eavesdroppers,” in IEEE Mediterranean Microwave Symposium (MMS), Marrakech, Morocco, Dec. 2014, pp. 1–6.
  • H. Lei, C. Gao, Y. Guo, and G. Pan, “On physical layer security over generalized gamma fading channels,” IEEE Communications Letters, vol. 19, no. 7, pp. 1257–1260, July 2015.
  • L. Kong, H. Tran, and G. Kaddoum, “Performance analysis of physical layer security over α–μ fading channel,” Electronics Letters, vol. 52, no. 1, pp. 45–47, 2016.
  • H. Lei, H. Zhang, I. S. Ansari, C. Gao., Y. Guo, G. Pan, and K. A. Qaraqe, “Performance analysis of physical layer security over generalized–𝐾 fading channels using a mixture gamma distribution,” IEEE Communications Letters, vol. 20, no. 2, pp. 408–411, Feb. 2016.
  • N. Bhargav, S. L. Cotton, and D. E. Simmons, “Secrecy capacity analysis over κ–μ fading channels: Theory and applications,” IEEE Transactions on Communications, vol. 64, no. 7, pp. 3011–3024, July 2016.
  • S. Iwata, T. Ohtsuki, and P. Y. Kam, “Secure outage probability over κ–μ fading channels,” in IEEE International Conference on Communications (ICC), Paris, France, May 2017, pp. 1–6.
  • G. C. Alexandropoulos, and K. P. Peppas, “Secrecy outage analysis over correlated composite Nakagami–m/Gamma fading channels,” IEEE. Communications Letters, vol. 22. no. 1, pp. 77–80, Jan. 2018.
  • L. Kong and G. Kaddoum, “On physical layer security over the Fisher-Snedecor F wiretap Fading Channels,” IEEE Access, vol. 6, pp. 39466–39472, 2018.
  • L. Kong, S. Vuppala, and G. Kaddoum, “Secrecy analysis of random MIMO wireless networks Over α–μ Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11654–11666, 2018.
  • H. Zhao, Y. Liu, A. Sultan-Salem, and M.–S. Alouini, “A simple evaluation for the secrecy outage probability over generalized-K fading channels,” IEEE Communications Letters, vol. 23, no. 9, pp. 1479-1483, 2019.
  • D. Zwillinger, CRC Standard Mathematical Tables and Formulae, 31st ed. Boca Raton, FL: Chapman & Hall/CRC, 2003.
  • Wolfram Research, Mathematica Edition: Version 8.0. Champaign, Illinois: Wolfram Research, Inc., 2010.
  • F. Yilmaz, “On the relationships between average channel capacity, average bit error rate, outage probability and outage capacity over additive white Gaussian noise channels,” arXiv preprint arXiv:1907.06634, 2019.
  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed. New York: Dover Publications, 1972
  • F. Yilmaz, and M.-S. Alouini, “A unified MGF-based capacity analysis of diversity combiners over generalized fading channels,” IEEE Transactions on Communications, vol. 60, no. 3, pp. 862-875, 2012.
  • F. Yilmaz, and M.-S. Alouini, “Extended generalized-K (EGK): A new simple and general model for composite fading channels,” arXiv preprint arXiv:1012.2598, 2010.
  • F. Yilmaz, and M.-S. Alouini, “A new simple model for composite fading channels: Second order statistics and channel capacity,” in International Symposium on Wireless Communication Systems (ISWCS), York, UK, Sep. 2010, pp. 676-680.
  • M. A. Chaudhry and S. M. Zubair, On a Class of Incom-plete Gamma Functions with Applications. Boca Raton-London-New York Washington, D.C.: Chapman & Hall/CRC, 2002.
  • A. Kilbas and M. Saigo, H-Transforms: Theory and Applications. Boca Raton, FL: CRC Press LLC, 2004.
  • A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and Applications, 1st ed. Dordrecht, Heidelberg, London, New York: Springer Science, 2009.
  • A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integral and Series: Volume 3, More Special Functions. CRC Press Inc., 1990.
  • N. C. Sagias, G. S. Tombras, and G. K. Karagiannidis, “New results for the Shannon channel capacity in generalized fading channels,” IEEE Communications Letters, vol. 9, no. 2, pp. 97–99, Feb. 2005.
There are 29 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Articles
Authors

Ferkan Yılmaz 0000-0001-6502-8280

Publication Date February 1, 2020
Submission Date December 6, 2019
Acceptance Date December 26, 2019
Published in Issue Year 2020

Cite

APA Yılmaz, F. (2020). On the Analysis of Secrecy Outage Probability Using Average Channel Capacity. Sakarya University Journal of Science, 24(1), 248-256. https://doi.org/10.16984/saufenbilder.655465
AMA Yılmaz F. On the Analysis of Secrecy Outage Probability Using Average Channel Capacity. SAUJS. February 2020;24(1):248-256. doi:10.16984/saufenbilder.655465
Chicago Yılmaz, Ferkan. “On the Analysis of Secrecy Outage Probability Using Average Channel Capacity”. Sakarya University Journal of Science 24, no. 1 (February 2020): 248-56. https://doi.org/10.16984/saufenbilder.655465.
EndNote Yılmaz F (February 1, 2020) On the Analysis of Secrecy Outage Probability Using Average Channel Capacity. Sakarya University Journal of Science 24 1 248–256.
IEEE F. Yılmaz, “On the Analysis of Secrecy Outage Probability Using Average Channel Capacity”, SAUJS, vol. 24, no. 1, pp. 248–256, 2020, doi: 10.16984/saufenbilder.655465.
ISNAD Yılmaz, Ferkan. “On the Analysis of Secrecy Outage Probability Using Average Channel Capacity”. Sakarya University Journal of Science 24/1 (February 2020), 248-256. https://doi.org/10.16984/saufenbilder.655465.
JAMA Yılmaz F. On the Analysis of Secrecy Outage Probability Using Average Channel Capacity. SAUJS. 2020;24:248–256.
MLA Yılmaz, Ferkan. “On the Analysis of Secrecy Outage Probability Using Average Channel Capacity”. Sakarya University Journal of Science, vol. 24, no. 1, 2020, pp. 248-56, doi:10.16984/saufenbilder.655465.
Vancouver Yılmaz F. On the Analysis of Secrecy Outage Probability Using Average Channel Capacity. SAUJS. 2020;24(1):248-56.