Research Article
BibTex RIS Cite
Year 2020, , 675 - 684, 01.08.2020
https://doi.org/10.16984/saufenbilder.696366

Abstract

References

  • [1] R. Ameri, “On the prime submodules of multiplication modules,” International journal of Mathematics and mathematical Sciences, vol. 27, pp. 1715-1724, 2003.
  • [2] D. D. Anderson, S. Chun and J. R. Juett, “Module-theoretic generalization of co mmutative von Neumann regular rings, “ Communications in Algebra, vol. 47, no. 11, pp. 4713-4728, 2019.
  • [3] D. F. Anderson and A. Badawi, “ On (m,n)-closed ideals of commutative rings,” Journal of Algebra and Its Applications, vol. 16, no. 01, 1750013 (21 page), 2017.
  • [4] M. F. Atiyah and I. G. Macdonald, “Introduction to commutative algebra,” Westview press, 1994.
  • [5] A. Barnard, “Multiplication modules,” Journal of Algebra, vol. 71, no. 1, pp. 174-178, 1981.
  • [6] Z. Bilgin and K. H. Oral, “Coprimely structured modules,” Palestine J Math, vol. 7, Spec. Issue 1, pp. 161–169, 2018.
  • [7] Z. Bilgin, S. Koç and A. Özkirişci, “Strongly prime submodules and strongly 0-dimensional modules,” Algebra and Discrete Mathematics, vol. 28, no. 2, pp. 171-183, 2019.
  • [8] J. Brewer and F. Richman, “Subrings of zero-dimensional rings,” In Multiplicative ideal theory in commutative algebra, Springer, Boston, MA, pp. 73-88, 2006.
  • [9] V. Camillo and W. K. Nicholson, “Quasi-morphic rings,” Journal of Algebra and Its Applications, vol. 6, no. 05, pp. 789-799, 2007.
  • [10] P. V. Danchev, “A generalization of 𝜋-regular rings,” Turkish Journal of Mathematics, vol. 43, no. 2, pp. 702-711, 2019.
  • [11] Z. A. El-Bast and P. F.Smith, “Multiplication modules,” Comm. in Algebra, vol. 16, no. 4, pp. 755-779, 1988.
  • [12] M. Evans, “On commutative PP rings,” Pacific Journal of mathematics, vol. 41, no. 3, pp. 687-697, 1972.
  • [13] C. Jayaram and Ü. Tekir, “von Neumann regular modules,” Communications in Algebra, vol. 46, no. 5, pp. 2205-2217, 2018.
  • [14] I. Kaplansky, “Commutative rings,” Allyn and Bacon, 1970.
  • [15] T. K. Lee and Y. Zhou, “Reduced Modules,” Rings, Modules, Algebras and Abelian Groups. Lecture Notes in Pure and Appl. Math., Vol. 236. New York: Dekker, pp. 365-377, 2004.
  • [16] C. P. Lu, “Prime submodules of modules,” Comment. Math. Univ. Sanct. Pauli, vol. 33, no. 1, pp. 61–69, 1984.
  • [17] E. Matlis, “Divisible modules,” Proceedings of the American Mathematical Society, vol. 11, no. 3, pp. 385-391, 1960.
  • [18] K. H. Oral, N. A. Özkirişci and Ü. Tekir, “Strongly 0-dimensional modules, “ Canadian Mathematical Bulletin, vol. 57, no. 1, pp. 159-165, 2014.
  • [19] P. Ribenboim, “Algebraic Numbers,” New York, NY, USA: Wiley, 1974.
  • [20] R. Y. Sharp, “Steps in commutative algebra,” (No. 51). Cambridge university press, 2000.
  • [21] P. F. Smith, “Some remark on multiplication modules”, Archiv der Mathematik, vol. 50, no. 3, pp. 223-235, 1988.
  • [22] J. Von Neumann, “On regular rings,” Proceedings of the National Academy of Sciences of the United States of America, vol. 22, no. 12, pp. 707-713, 1936.
  • [23] S. Yassemi, “The dual notion of prime submodules,” Arch. Math.(Brno), vol. 37, no. 4, pp. 273-278, 2001.
  • [24] H. Zhu and N. Ding, “Generalized morphic rings and their applications, “ Communications in Algebra, vol. 35, no. 9, pp. 2820-2837, 2007.

On Strongly 𝝅-regular Modules

Year 2020, , 675 - 684, 01.08.2020
https://doi.org/10.16984/saufenbilder.696366

Abstract

In this article, we introduce the notion of strongly π-regular module which is a generalization of von Neumann regular module in the sense [13]. Let A be a commutative ring with 1≠0 and X a multiplication A-module. X is called a strongly π-regular module if for each x∈X, 〖(Ax)〗^m=cX=c^2 X for some c∈A and m∈N. In addition to give many properties and examples of strongly π-regular modules, we also characterize certain class of modules such as von Neumann regular modules and second modules in terms of this new class of modules. Also, we determine when the localization of any family of submodules at a prime ideal commutes with the intersection of this family.

References

  • [1] R. Ameri, “On the prime submodules of multiplication modules,” International journal of Mathematics and mathematical Sciences, vol. 27, pp. 1715-1724, 2003.
  • [2] D. D. Anderson, S. Chun and J. R. Juett, “Module-theoretic generalization of co mmutative von Neumann regular rings, “ Communications in Algebra, vol. 47, no. 11, pp. 4713-4728, 2019.
  • [3] D. F. Anderson and A. Badawi, “ On (m,n)-closed ideals of commutative rings,” Journal of Algebra and Its Applications, vol. 16, no. 01, 1750013 (21 page), 2017.
  • [4] M. F. Atiyah and I. G. Macdonald, “Introduction to commutative algebra,” Westview press, 1994.
  • [5] A. Barnard, “Multiplication modules,” Journal of Algebra, vol. 71, no. 1, pp. 174-178, 1981.
  • [6] Z. Bilgin and K. H. Oral, “Coprimely structured modules,” Palestine J Math, vol. 7, Spec. Issue 1, pp. 161–169, 2018.
  • [7] Z. Bilgin, S. Koç and A. Özkirişci, “Strongly prime submodules and strongly 0-dimensional modules,” Algebra and Discrete Mathematics, vol. 28, no. 2, pp. 171-183, 2019.
  • [8] J. Brewer and F. Richman, “Subrings of zero-dimensional rings,” In Multiplicative ideal theory in commutative algebra, Springer, Boston, MA, pp. 73-88, 2006.
  • [9] V. Camillo and W. K. Nicholson, “Quasi-morphic rings,” Journal of Algebra and Its Applications, vol. 6, no. 05, pp. 789-799, 2007.
  • [10] P. V. Danchev, “A generalization of 𝜋-regular rings,” Turkish Journal of Mathematics, vol. 43, no. 2, pp. 702-711, 2019.
  • [11] Z. A. El-Bast and P. F.Smith, “Multiplication modules,” Comm. in Algebra, vol. 16, no. 4, pp. 755-779, 1988.
  • [12] M. Evans, “On commutative PP rings,” Pacific Journal of mathematics, vol. 41, no. 3, pp. 687-697, 1972.
  • [13] C. Jayaram and Ü. Tekir, “von Neumann regular modules,” Communications in Algebra, vol. 46, no. 5, pp. 2205-2217, 2018.
  • [14] I. Kaplansky, “Commutative rings,” Allyn and Bacon, 1970.
  • [15] T. K. Lee and Y. Zhou, “Reduced Modules,” Rings, Modules, Algebras and Abelian Groups. Lecture Notes in Pure and Appl. Math., Vol. 236. New York: Dekker, pp. 365-377, 2004.
  • [16] C. P. Lu, “Prime submodules of modules,” Comment. Math. Univ. Sanct. Pauli, vol. 33, no. 1, pp. 61–69, 1984.
  • [17] E. Matlis, “Divisible modules,” Proceedings of the American Mathematical Society, vol. 11, no. 3, pp. 385-391, 1960.
  • [18] K. H. Oral, N. A. Özkirişci and Ü. Tekir, “Strongly 0-dimensional modules, “ Canadian Mathematical Bulletin, vol. 57, no. 1, pp. 159-165, 2014.
  • [19] P. Ribenboim, “Algebraic Numbers,” New York, NY, USA: Wiley, 1974.
  • [20] R. Y. Sharp, “Steps in commutative algebra,” (No. 51). Cambridge university press, 2000.
  • [21] P. F. Smith, “Some remark on multiplication modules”, Archiv der Mathematik, vol. 50, no. 3, pp. 223-235, 1988.
  • [22] J. Von Neumann, “On regular rings,” Proceedings of the National Academy of Sciences of the United States of America, vol. 22, no. 12, pp. 707-713, 1936.
  • [23] S. Yassemi, “The dual notion of prime submodules,” Arch. Math.(Brno), vol. 37, no. 4, pp. 273-278, 2001.
  • [24] H. Zhu and N. Ding, “Generalized morphic rings and their applications, “ Communications in Algebra, vol. 35, no. 9, pp. 2820-2837, 2007.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Suat Koç 0000-0003-1622-786X

Publication Date August 1, 2020
Submission Date February 28, 2020
Acceptance Date May 10, 2020
Published in Issue Year 2020

Cite

APA Koç, S. (2020). On Strongly 𝝅-regular Modules. Sakarya University Journal of Science, 24(4), 675-684. https://doi.org/10.16984/saufenbilder.696366
AMA Koç S. On Strongly 𝝅-regular Modules. SAUJS. August 2020;24(4):675-684. doi:10.16984/saufenbilder.696366
Chicago Koç, Suat. “On Strongly 𝝅-Regular Modules”. Sakarya University Journal of Science 24, no. 4 (August 2020): 675-84. https://doi.org/10.16984/saufenbilder.696366.
EndNote Koç S (August 1, 2020) On Strongly 𝝅-regular Modules. Sakarya University Journal of Science 24 4 675–684.
IEEE S. Koç, “On Strongly 𝝅-regular Modules”, SAUJS, vol. 24, no. 4, pp. 675–684, 2020, doi: 10.16984/saufenbilder.696366.
ISNAD Koç, Suat. “On Strongly 𝝅-Regular Modules”. Sakarya University Journal of Science 24/4 (August 2020), 675-684. https://doi.org/10.16984/saufenbilder.696366.
JAMA Koç S. On Strongly 𝝅-regular Modules. SAUJS. 2020;24:675–684.
MLA Koç, Suat. “On Strongly 𝝅-Regular Modules”. Sakarya University Journal of Science, vol. 24, no. 4, 2020, pp. 675-84, doi:10.16984/saufenbilder.696366.
Vancouver Koç S. On Strongly 𝝅-regular Modules. SAUJS. 2020;24(4):675-84.

Cited By

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.