Research Article
BibTex RIS Cite
Year 2020, , 596 - 604, 01.08.2020
https://doi.org/10.16984/saufenbilder.696709

Abstract

References

  • [1] M. O. Scully and M. S. Zubairy, "Quantum Optics", Cambridge Press, 1997.
  • [2] H. J. Carmichael "Statistical Methods in QuantumOptics", Springer Press, 1999.
  • [3] G. Guarnieri, A. Smirne, B. Vacchini, "Quantumregression theorem and non-Markovianity of quantum dynamics", Phys. Rev. A, vol. 90, pp. 022110,2014.
  • [4] H.-S. Goan, P.-W. Chen, C.-C. Jian, "Non-Markovian finite-temperature two-time correlation functions of system operators: Beyond the quantum regression theorem", J. Chem. Phys., vol. 134, pp. 124112, 2011.
  • [5] D. P. S. McCutcheon "Optical signatures of non-Markovian behavior in open quantum systems", Phys. Rev. A, vol. 93, pp. 022119, 2016.
  • [6] M. Cosacchi, M. Cygorek, F. Ungar, A. M. Barth, A. Vagov, V. M. Axt, "Path-integral approach for nonequilibrium multi-time correlation functions of open quantum systems coupled to Markovian and non-Markovian environments", Phys. Rev. B, vol.98, pp. 125302, 2018.
  • [7] D. Alonso, I. de Vega, "Multiple-Time Correlation Functions for Non-Markovian Interaction: Be-yond the Quantum Regression Theorem", Phys.Rev. Lett., vol. 94, pp. 200403, 2005.
  • [8] D. Alonso, I. de Vega, "Hierarchy of equations of multiple-time correlation functions", Phys. Rev. A, vol. 75, pp. 052108, 2007.
  • [9] I. de Vega, D. Alonso, "Non-Markovian reduced propagator, multiple-time correlation functions, and master equations with general initial conditions in the weak-coupling limit", Phys. Rev. A, vol. 73, pp.022102, 2006.
  • [10] I. de Vega, D. Alonso, "Emission spectra of atoms with non-Markovian interaction: Fluorescence in a photonic crystal", Phys. Rev. A, vol. 77, pp. 043836,2008.
  • [11] H.-S. Goan, C.-C. Jian, P.-W. Chen, "Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model", Phys. Rev. A, vol. 82, pp. 012111, 2010.
  • [12] M. M. Ali, P.-Y. Lo, M. W.-Y. Tu, W.-M. Zhang, "Non-Markovianity measure using two-time correlation functions", Phys. Rev. A, vol. 92, pp. 062306,2015.
  • [13] H.-P. Breuer, E.-M. Laine, J. Piilo, "Measure for the Degree of Non-Markovian Behavior of QuantumProcesses in Open Systems", Phys. Rev. Lett., vol.103, pp. 210401, 2009.
  • [14] A. Garg, J. N. Onuchic, V. J. Ambegaokar, "Effect of Friction on Electron Transfer in Biomolecules", J. Chem. Phys., vol. 83, pp. 4491-4503, 1985.

Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model

Year 2020, , 596 - 604, 01.08.2020
https://doi.org/10.16984/saufenbilder.696709

Abstract

We report the results of an investigation of the effects of non-Markovian corrections to the dynamics of two-time correlation functions of the strong interaction spin-boson model. Beyond quantum regression theorem corrections are taken into account at the low environmental temperatures for a two-level system (TLS) which is in contact with a structured bath. The results indicate that the corrections lead to appreciable (small) quantitative (qualitative) differences for both biased and non-biased TLS settings.

References

  • [1] M. O. Scully and M. S. Zubairy, "Quantum Optics", Cambridge Press, 1997.
  • [2] H. J. Carmichael "Statistical Methods in QuantumOptics", Springer Press, 1999.
  • [3] G. Guarnieri, A. Smirne, B. Vacchini, "Quantumregression theorem and non-Markovianity of quantum dynamics", Phys. Rev. A, vol. 90, pp. 022110,2014.
  • [4] H.-S. Goan, P.-W. Chen, C.-C. Jian, "Non-Markovian finite-temperature two-time correlation functions of system operators: Beyond the quantum regression theorem", J. Chem. Phys., vol. 134, pp. 124112, 2011.
  • [5] D. P. S. McCutcheon "Optical signatures of non-Markovian behavior in open quantum systems", Phys. Rev. A, vol. 93, pp. 022119, 2016.
  • [6] M. Cosacchi, M. Cygorek, F. Ungar, A. M. Barth, A. Vagov, V. M. Axt, "Path-integral approach for nonequilibrium multi-time correlation functions of open quantum systems coupled to Markovian and non-Markovian environments", Phys. Rev. B, vol.98, pp. 125302, 2018.
  • [7] D. Alonso, I. de Vega, "Multiple-Time Correlation Functions for Non-Markovian Interaction: Be-yond the Quantum Regression Theorem", Phys.Rev. Lett., vol. 94, pp. 200403, 2005.
  • [8] D. Alonso, I. de Vega, "Hierarchy of equations of multiple-time correlation functions", Phys. Rev. A, vol. 75, pp. 052108, 2007.
  • [9] I. de Vega, D. Alonso, "Non-Markovian reduced propagator, multiple-time correlation functions, and master equations with general initial conditions in the weak-coupling limit", Phys. Rev. A, vol. 73, pp.022102, 2006.
  • [10] I. de Vega, D. Alonso, "Emission spectra of atoms with non-Markovian interaction: Fluorescence in a photonic crystal", Phys. Rev. A, vol. 77, pp. 043836,2008.
  • [11] H.-S. Goan, C.-C. Jian, P.-W. Chen, "Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model", Phys. Rev. A, vol. 82, pp. 012111, 2010.
  • [12] M. M. Ali, P.-Y. Lo, M. W.-Y. Tu, W.-M. Zhang, "Non-Markovianity measure using two-time correlation functions", Phys. Rev. A, vol. 92, pp. 062306,2015.
  • [13] H.-P. Breuer, E.-M. Laine, J. Piilo, "Measure for the Degree of Non-Markovian Behavior of QuantumProcesses in Open Systems", Phys. Rev. Lett., vol.103, pp. 210401, 2009.
  • [14] A. Garg, J. N. Onuchic, V. J. Ambegaokar, "Effect of Friction on Electron Transfer in Biomolecules", J. Chem. Phys., vol. 83, pp. 4491-4503, 1985.
There are 14 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Arzu Kurt 0000-0002-2345-3059

Publication Date August 1, 2020
Submission Date March 1, 2020
Acceptance Date April 22, 2020
Published in Issue Year 2020

Cite

APA Kurt, A. (2020). Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model. Sakarya University Journal of Science, 24(4), 596-604. https://doi.org/10.16984/saufenbilder.696709
AMA Kurt A. Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model. SAUJS. August 2020;24(4):596-604. doi:10.16984/saufenbilder.696709
Chicago Kurt, Arzu. “Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model”. Sakarya University Journal of Science 24, no. 4 (August 2020): 596-604. https://doi.org/10.16984/saufenbilder.696709.
EndNote Kurt A (August 1, 2020) Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model. Sakarya University Journal of Science 24 4 596–604.
IEEE A. Kurt, “Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model”, SAUJS, vol. 24, no. 4, pp. 596–604, 2020, doi: 10.16984/saufenbilder.696709.
ISNAD Kurt, Arzu. “Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model”. Sakarya University Journal of Science 24/4 (August 2020), 596-604. https://doi.org/10.16984/saufenbilder.696709.
JAMA Kurt A. Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model. SAUJS. 2020;24:596–604.
MLA Kurt, Arzu. “Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model”. Sakarya University Journal of Science, vol. 24, no. 4, 2020, pp. 596-04, doi:10.16984/saufenbilder.696709.
Vancouver Kurt A. Non-Markovian Corrections to Quantum Regression Theorem for the Strong Coupling Spin-Boson Model. SAUJS. 2020;24(4):596-604.