Research Article
BibTex RIS Cite
Year 2020, , 652 - 664, 01.08.2020
https://doi.org/10.16984/saufenbilder.699212

Abstract

References

  • M.K. Bakula, M.E. Özdemir, and J. Pečarić, “Hadamard type inequalities for m-convex and (α,m)-convex functions,” J. Inequal. Pure Appl. Math. 9(4), Art. 96, 12 pages, 2008.
  • S.S. Dragomir, “Inequalities of Hermite-Hadamard type for GA-convex functions,” Annales Mathematicae Silesianae. 32(1). Sciendo, 2018.
  • S.S. Dragomir and RP. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula,” Appl. Math. Lett. 11, 91-95, 1998.
  • S.S. Dragomir and C.E.M. Pearce, “Selected Topics on Hermite-Hadamard Inequalities and Its Applications,” RGMIA Monograph, 2002.
  • S.S. Dragomir, J. Pečarić and LE.Persson, “Some inequalities of Hadamard Type,” Soochow Journal of Mathematics, 21(3), pp. 335-341, 2001.
  • J. Hadamard, “Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann,” J. Math. Pures Appl. 58, 171-215, 1893.
  • İ. İşcan, “New refinements for integral and sum forms of Hölder inequality,” 2019:304, 11 pages, 2019.
  • İ. İşcan and M. Kunt, “Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals, Journal of Mathematics,” Volume 2016, Article ID 6523041, 7 pages, 2016.
  • A.P. Ji, T.Y. Zhang, F. Qi, “Integral inequalities of Hermite-Hadamard type for (α,m)-GA-convex functions,” arXiv preprint arXiv:1306.0852, 4 June 2013.
  • H. Kadakal, “Hermite-Hadamard type inequalities for trigonometrically convex functions,” Scientific Studies and Research. Series Mathematics and Informatics, 28(2), 19-28, 2018.
  • H. Kadakal, “New Inequalities for Strongly r-Convex Functions,” Journal of Function Spaces, Volume 2019, Article ID 1219237, 10 pages, 2019.
  • H. Kadakal, “(m_1,m_2 )-convexity and some new Hermite-Hadamard type inequalities,” International Journal of Mathematical Modelling and Computations, (Accepted for publication), 2020.
  • H. Kadakal, “(α,m_1,m_2 )-convexity and some inequalities of Hermite-Hadamard type,” Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2128-2142, 2019.
  • M. Kadakal, “(m_1,m_2 )-geometric arithmetically convex functions and related inequalities,” Mathematical Sciences and Applications E-Notes, (Submitted to journal), 2020.
  • M. Kadakal, H. Kadakal and İ. İşcan, “Some new integral inequalities for n-times differentiable s-convex functions in the first sense,” Turkish Journal of Analysis and Number Theory, 5(2), 63-68, 2017.
  • V.G. Miheşan, “A generalization of the convexity,” Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, (Romania), 1993.
  • C.P. Niculescu, “Convexity according to the geometric mean,” Math. Inequal. Appl. 3(2), 155-167, 2000.
  • C.P. Niculescu, “Convexity according to means,” Math. Inequal. Appl. 6 (4), 571-579, 2003.
  • S. Özcan, “Some Integral Inequalities for Harmonically (α,s)-Convex Functions, Journal of Function Spaces,” 2019, Article ID 2394021, 8 pages 2019.
  • S. Özcan, and İ. İşcan, “Some new Hermite-Hadamard type inequalities for s-convex functions and their applications,” Journal of Inequalities and Applications, Article number: 2019:201, 2019.
  • Y. Shuang, Yin, H.P. and Qi, F., “Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions,” Analysis, 33, 197-208, 2013.
  • G. Toader, “Some generalizations of the convexity,” Proc. Colloq. Approx. Optim., Univ. Cluj Napoca, Cluj-Napoca, 329-338, 1985.
  • F. Usta, H. Budak and M.Z. Sarıkaya, “Montgomery identities and Ostrowski type inequalities for fractional integral operators,” Revista de la Real Academia de Ciencias Exactas, F13 ̆053'fsicas y Naturales. Serie A. Matemáticas, 113(2), 1059-1080, 2019.
  • F. Usta, H. Budak and M.Z. Sarıkaya, “Some New Chebyshev Type Inequalities Utilizing Generalized Fractional Integral Operators,” AIMS Mathematics, 5(2), 1147-1161, 2020.
  • S. Varošanec, “On h-convexity,”J. Math. Anal. Appl. 326, 303-311, 2007.

Some new inequalities for (α,m1,m2 )-GA convex functions

Year 2020, , 652 - 664, 01.08.2020
https://doi.org/10.16984/saufenbilder.699212

Abstract

In this manuscript, firstly we introduce and study the concept of (α,m_1,m_2 )-Geometric-Arithmetically (GA) convex functions and some algebraic properties of such type functions. Then, we obtain Hermite-Hadamard type integral inequalities for the newly introduced class of functions by using an identity together with Hölder integral inequality, power-mean integral inequality and Hölder-İşcan integral inequality giving a better approach than Hölder integral inequality. Inequalities have been obtained with the help of Gamma function. In addition, results were obtained according to the special cases of α, m_1 and m_2.

References

  • M.K. Bakula, M.E. Özdemir, and J. Pečarić, “Hadamard type inequalities for m-convex and (α,m)-convex functions,” J. Inequal. Pure Appl. Math. 9(4), Art. 96, 12 pages, 2008.
  • S.S. Dragomir, “Inequalities of Hermite-Hadamard type for GA-convex functions,” Annales Mathematicae Silesianae. 32(1). Sciendo, 2018.
  • S.S. Dragomir and RP. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula,” Appl. Math. Lett. 11, 91-95, 1998.
  • S.S. Dragomir and C.E.M. Pearce, “Selected Topics on Hermite-Hadamard Inequalities and Its Applications,” RGMIA Monograph, 2002.
  • S.S. Dragomir, J. Pečarić and LE.Persson, “Some inequalities of Hadamard Type,” Soochow Journal of Mathematics, 21(3), pp. 335-341, 2001.
  • J. Hadamard, “Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann,” J. Math. Pures Appl. 58, 171-215, 1893.
  • İ. İşcan, “New refinements for integral and sum forms of Hölder inequality,” 2019:304, 11 pages, 2019.
  • İ. İşcan and M. Kunt, “Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals, Journal of Mathematics,” Volume 2016, Article ID 6523041, 7 pages, 2016.
  • A.P. Ji, T.Y. Zhang, F. Qi, “Integral inequalities of Hermite-Hadamard type for (α,m)-GA-convex functions,” arXiv preprint arXiv:1306.0852, 4 June 2013.
  • H. Kadakal, “Hermite-Hadamard type inequalities for trigonometrically convex functions,” Scientific Studies and Research. Series Mathematics and Informatics, 28(2), 19-28, 2018.
  • H. Kadakal, “New Inequalities for Strongly r-Convex Functions,” Journal of Function Spaces, Volume 2019, Article ID 1219237, 10 pages, 2019.
  • H. Kadakal, “(m_1,m_2 )-convexity and some new Hermite-Hadamard type inequalities,” International Journal of Mathematical Modelling and Computations, (Accepted for publication), 2020.
  • H. Kadakal, “(α,m_1,m_2 )-convexity and some inequalities of Hermite-Hadamard type,” Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2128-2142, 2019.
  • M. Kadakal, “(m_1,m_2 )-geometric arithmetically convex functions and related inequalities,” Mathematical Sciences and Applications E-Notes, (Submitted to journal), 2020.
  • M. Kadakal, H. Kadakal and İ. İşcan, “Some new integral inequalities for n-times differentiable s-convex functions in the first sense,” Turkish Journal of Analysis and Number Theory, 5(2), 63-68, 2017.
  • V.G. Miheşan, “A generalization of the convexity,” Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, (Romania), 1993.
  • C.P. Niculescu, “Convexity according to the geometric mean,” Math. Inequal. Appl. 3(2), 155-167, 2000.
  • C.P. Niculescu, “Convexity according to means,” Math. Inequal. Appl. 6 (4), 571-579, 2003.
  • S. Özcan, “Some Integral Inequalities for Harmonically (α,s)-Convex Functions, Journal of Function Spaces,” 2019, Article ID 2394021, 8 pages 2019.
  • S. Özcan, and İ. İşcan, “Some new Hermite-Hadamard type inequalities for s-convex functions and their applications,” Journal of Inequalities and Applications, Article number: 2019:201, 2019.
  • Y. Shuang, Yin, H.P. and Qi, F., “Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions,” Analysis, 33, 197-208, 2013.
  • G. Toader, “Some generalizations of the convexity,” Proc. Colloq. Approx. Optim., Univ. Cluj Napoca, Cluj-Napoca, 329-338, 1985.
  • F. Usta, H. Budak and M.Z. Sarıkaya, “Montgomery identities and Ostrowski type inequalities for fractional integral operators,” Revista de la Real Academia de Ciencias Exactas, F13 ̆053'fsicas y Naturales. Serie A. Matemáticas, 113(2), 1059-1080, 2019.
  • F. Usta, H. Budak and M.Z. Sarıkaya, “Some New Chebyshev Type Inequalities Utilizing Generalized Fractional Integral Operators,” AIMS Mathematics, 5(2), 1147-1161, 2020.
  • S. Varošanec, “On h-convexity,”J. Math. Anal. Appl. 326, 303-311, 2007.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Mahir Kadakal 0000-0002-0240-918X

Publication Date August 1, 2020
Submission Date March 5, 2020
Acceptance Date May 10, 2020
Published in Issue Year 2020

Cite

APA Kadakal, M. (2020). Some new inequalities for (α,m1,m2 )-GA convex functions. Sakarya University Journal of Science, 24(4), 652-664. https://doi.org/10.16984/saufenbilder.699212
AMA Kadakal M. Some new inequalities for (α,m1,m2 )-GA convex functions. SAUJS. August 2020;24(4):652-664. doi:10.16984/saufenbilder.699212
Chicago Kadakal, Mahir. “Some New Inequalities for (α,m1,m2 )-GA Convex Functions”. Sakarya University Journal of Science 24, no. 4 (August 2020): 652-64. https://doi.org/10.16984/saufenbilder.699212.
EndNote Kadakal M (August 1, 2020) Some new inequalities for (α,m1,m2 )-GA convex functions. Sakarya University Journal of Science 24 4 652–664.
IEEE M. Kadakal, “Some new inequalities for (α,m1,m2 )-GA convex functions”, SAUJS, vol. 24, no. 4, pp. 652–664, 2020, doi: 10.16984/saufenbilder.699212.
ISNAD Kadakal, Mahir. “Some New Inequalities for (α,m1,m2 )-GA Convex Functions”. Sakarya University Journal of Science 24/4 (August 2020), 652-664. https://doi.org/10.16984/saufenbilder.699212.
JAMA Kadakal M. Some new inequalities for (α,m1,m2 )-GA convex functions. SAUJS. 2020;24:652–664.
MLA Kadakal, Mahir. “Some New Inequalities for (α,m1,m2 )-GA Convex Functions”. Sakarya University Journal of Science, vol. 24, no. 4, 2020, pp. 652-64, doi:10.16984/saufenbilder.699212.
Vancouver Kadakal M. Some new inequalities for (α,m1,m2 )-GA convex functions. SAUJS. 2020;24(4):652-64.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.