Research Article
BibTex RIS Cite
Year 2021, , 834 - 840, 30.06.2021
https://doi.org/10.16984/saufenbilder.911340

Abstract

References

  • [1] A. O. Barut, “Excited states of zitterbewegung,” Physics Letters B, vol. 237, no. 3, pp. 436-439, 1990.
  • [2] A. O. Barut and S. Komy, “Derivation of nonperturbative Relativistic Two-Body Equations from the Action Principle in Quantumelectrodynamics,” Fortschritte der Physik/Progress of Physics, vol. 33, no. 6. pp 309-318, 1985.
  • [3] A. Guvendi, “Relativistic Landau for a fermion-antifermion pair interacting through Dirac oscillator interaction,” The European Physical Journal C, vol. 81, no. 2. pp 1-7, 2021.
  • [4] N. Ünal, “A simple model of the classical zitterbewegung: photon wave function,”Foundations of Physics, vol. 27, no. 5. pp 731-746, 1997.
  • [5] Y. Sucu and N. Ünal, “Vector bosons in the expanding universe,” The European Physical Journal C, vol. 44, no. 2. pp 287- 291, 2005.
  • [6] Y. Sucu and C. Tekincay, “Photon in the Earth-ionosphere cavity: Schumann resonances,” Astrophysics and Space Science, vol. 364, no. 4. pp 1-7, 2019.
  • [7] M. Dernek and S. G. Doğan and Y. Sucu and N. Ünal, “Relativistic quantum mechanical spin-1 wave equation in 2+1 dimensional spacetime,” Turkish Journal of Physics, vol. 42, no. 5. pp 509-526, 2018.
  • [8] G. Gecim and Y. Sucu, “The GUP effect on tunneling of massive vector bosons from the 2+1 dimensional blackhole,” Advances in High Energy Physics, vol. 2018, no. 8. pp 1- 8, 2018.
  • [9] A. Vilenkin, “Cosmic strings and domain walls,” Physics Reports, vol. 121, no. 5. pp 263-315, 1985.
  • [10] S. Deser, R. Jackiw and G. Hooft, “Threedimensional Einstein gravity: dynamics of flat space,” Annals of Physics, vol. 152, no. 1. pp 220-235, 1984.
  • [11] J. R. Gott and M. Alpert, “General relativity in a (2+1)-dimensional space-time,” General Relativity and Gravitation, vol. 16, no. 3. pp 243-247, 1984.
  • [12] B. Linet, “Force on a charge in the spacetime of a cosmic string,” Physical Review D, vol. 33, no. 6. pp 1833, 1986.
  • [13] D. D. Harari and V. D. Skarzhinsky, “Pair production in the gravitational field of a cosmic string,” Physics Letters B, vol. 240, no. 3-4. pp 322-326, 1990.
  • [14] L. Parker, “Gravitational particle production in the formation of cosmic strings,” Physical Review Letters, vol. 59, no. 12. pp 1369, 1987.
  • [15] A. Guvendi and Y. Sucu, “An interacting fermion-antifermion pair in the spacetime background generated by static cosmic string,” Physics Letters B, vol. 811, no. 135960. pp 135960, 2020.
  • [16] M. Hosseinpour, H. Hassanabadi and F. M. Andrade,“The DKP oscillator with a linear interaction in the cosmic string space-time,” The European Physical Journal C, vol. 78, no. 2. pp 1-7, 2018.
  • [17] J. Carvalho, C. Furtado and F. Moreas, “Dirac oscillator interacting with a topological defect,” Physical Review A, vol. 84, no. 3. pp 032109, 2011.
  • [18] A. Guvendi, “The lifetimes for each state of levels of the para-positronium,” Eur. Phys. J. Plus, vol. 136, no. 4. pp 1-10, 2021.
  • [19] G. A. Marques and V. B. Bezerra, “Hydrogen atom in the gravitational fields of topological defects,” Physical Review D, vol. 66, no. 10. pp 105011, 2002.
  • [20] K. Bakke and C. Furtado, “Bound states for neutral particles in a rotating frame in the cosmic string spacetime,” Physical Review D, vol. 82, no. 8. pp 084025, 2010.
  • [21] S. Zare, H. Hassanabadi and M. de Montigny, “Non-inertial effects on a generalized DKP oscillator in a cosmic string space-time,” General Relativity and Gravitation, vol. 52, no. 3. pp 1-20, 2020.
  • [22] L. C. N. Santos and C. C. Barros, “Scalar bosons under the influence of noninertial effects in the cosmic string spacetime,” The European Physical Journal C, vol. 77, no. 3. pp 1-7, 2017.
  • [23] E. J. Post, “Sagnac Effect,” Reviews of Modern Physics, vol. 39, no. 2. pp 475-493, 1967.
  • [24] B. Mashhoon, “Neutron interferometry in a rotating frame of reference,” Physical Review Letters, vol. 61, no. 23. pp 2639- 2642, 1988.
  • [25] F. W. Hehl and W. T. Ni, “Inertial effects of a Dirac particle,” Physical Review D, vol. 42, no. 6. pp 2045-2048, 1990.
  • [26] S. A. Werner, J. L. Staudenmann and R. Corella, “Effects of Earth’s rotation on the Quantum Mechanical Phase of the Neutron,” Physical Review Letters, vol. 42, no. 17. pp 1103-1106, 1979.
  • [27] J. Q. Shen and S. L. He, “Geometric phases of electrons due to spin-rotation coupling in rotating molecules,” Physical Review B, vol. 68, no. 19. pp 195421, 2003.
  • [28] J. Q. Shen, S. L. He and F. Zhuang, “Aharonov-Carmi effect and energy shift of valence electrons in rotating molecules,” The European Physical Journal D, vol. 33, no. 1. pp 35-38, 2005.
  • [29] A. Guvendi, R. Sahin and Y. Sucu, “Exact solution of an exciton energy for a monolayer medium,” Scientific Reports, vol. 9, no. 1. pp 1-6, 2019.
  • [30] A. Guvendi, R. Sahin and Y. Sucu, “Binding energy and decaytime of exciton in dielectric medium,” The European Physical Journal B, vol. 94, no. 1. pp 1-7, 2021.
  • [31] A. Guvendi and S. G. Doğan, “Relativistic Dynamics of Oppositely charged Two Fermions Interacting with External Uniform Magnetic Field,” Few-Body Systems, vol. 62, no. 1. pp 1-8, 2021.
  • [32] A. Boumali, “One-dimensional thermal properties of the Kemmer oscillator,” Physica Scripta, vol. 76, no. 6. pp 669, 2007.
  • [33] M. H. Pacheco, R. R. Landim and C. A. S. Almeida, “One-dimensional Dirac oscillator in a thermal bath,” Physics Letters A, vol. 311, no. 2-3. pp 93-96, 2003.

Effects of Rotating Frame on a Vector Boson Oscillator

Year 2021, , 834 - 840, 30.06.2021
https://doi.org/10.16984/saufenbilder.911340

Abstract

We analyze the effects of the spacetime topology and angular velocity of rotating frame on the dynamics of a relativistic vector boson oscillator (VBO). To determine these effects on the energy of the VBO we solve the corresponding vector boson equation in the rotating frame of 2+1 dimensional cosmic string-induced spacetime background. We obtain an exact energy spectrum, which depends on the angular velocity of the rotating frame and angular deficit parameter of the background. We show that the effects of angular deficit parameter on each energy level of the VBO cannot be same and the angular velocity of the rotating frame couples with the spin of the VBO. Furthermore, we have obtained that the angular velocity of rotating frame breaks the symmetry of the positive-negative energy states.

References

  • [1] A. O. Barut, “Excited states of zitterbewegung,” Physics Letters B, vol. 237, no. 3, pp. 436-439, 1990.
  • [2] A. O. Barut and S. Komy, “Derivation of nonperturbative Relativistic Two-Body Equations from the Action Principle in Quantumelectrodynamics,” Fortschritte der Physik/Progress of Physics, vol. 33, no. 6. pp 309-318, 1985.
  • [3] A. Guvendi, “Relativistic Landau for a fermion-antifermion pair interacting through Dirac oscillator interaction,” The European Physical Journal C, vol. 81, no. 2. pp 1-7, 2021.
  • [4] N. Ünal, “A simple model of the classical zitterbewegung: photon wave function,”Foundations of Physics, vol. 27, no. 5. pp 731-746, 1997.
  • [5] Y. Sucu and N. Ünal, “Vector bosons in the expanding universe,” The European Physical Journal C, vol. 44, no. 2. pp 287- 291, 2005.
  • [6] Y. Sucu and C. Tekincay, “Photon in the Earth-ionosphere cavity: Schumann resonances,” Astrophysics and Space Science, vol. 364, no. 4. pp 1-7, 2019.
  • [7] M. Dernek and S. G. Doğan and Y. Sucu and N. Ünal, “Relativistic quantum mechanical spin-1 wave equation in 2+1 dimensional spacetime,” Turkish Journal of Physics, vol. 42, no. 5. pp 509-526, 2018.
  • [8] G. Gecim and Y. Sucu, “The GUP effect on tunneling of massive vector bosons from the 2+1 dimensional blackhole,” Advances in High Energy Physics, vol. 2018, no. 8. pp 1- 8, 2018.
  • [9] A. Vilenkin, “Cosmic strings and domain walls,” Physics Reports, vol. 121, no. 5. pp 263-315, 1985.
  • [10] S. Deser, R. Jackiw and G. Hooft, “Threedimensional Einstein gravity: dynamics of flat space,” Annals of Physics, vol. 152, no. 1. pp 220-235, 1984.
  • [11] J. R. Gott and M. Alpert, “General relativity in a (2+1)-dimensional space-time,” General Relativity and Gravitation, vol. 16, no. 3. pp 243-247, 1984.
  • [12] B. Linet, “Force on a charge in the spacetime of a cosmic string,” Physical Review D, vol. 33, no. 6. pp 1833, 1986.
  • [13] D. D. Harari and V. D. Skarzhinsky, “Pair production in the gravitational field of a cosmic string,” Physics Letters B, vol. 240, no. 3-4. pp 322-326, 1990.
  • [14] L. Parker, “Gravitational particle production in the formation of cosmic strings,” Physical Review Letters, vol. 59, no. 12. pp 1369, 1987.
  • [15] A. Guvendi and Y. Sucu, “An interacting fermion-antifermion pair in the spacetime background generated by static cosmic string,” Physics Letters B, vol. 811, no. 135960. pp 135960, 2020.
  • [16] M. Hosseinpour, H. Hassanabadi and F. M. Andrade,“The DKP oscillator with a linear interaction in the cosmic string space-time,” The European Physical Journal C, vol. 78, no. 2. pp 1-7, 2018.
  • [17] J. Carvalho, C. Furtado and F. Moreas, “Dirac oscillator interacting with a topological defect,” Physical Review A, vol. 84, no. 3. pp 032109, 2011.
  • [18] A. Guvendi, “The lifetimes for each state of levels of the para-positronium,” Eur. Phys. J. Plus, vol. 136, no. 4. pp 1-10, 2021.
  • [19] G. A. Marques and V. B. Bezerra, “Hydrogen atom in the gravitational fields of topological defects,” Physical Review D, vol. 66, no. 10. pp 105011, 2002.
  • [20] K. Bakke and C. Furtado, “Bound states for neutral particles in a rotating frame in the cosmic string spacetime,” Physical Review D, vol. 82, no. 8. pp 084025, 2010.
  • [21] S. Zare, H. Hassanabadi and M. de Montigny, “Non-inertial effects on a generalized DKP oscillator in a cosmic string space-time,” General Relativity and Gravitation, vol. 52, no. 3. pp 1-20, 2020.
  • [22] L. C. N. Santos and C. C. Barros, “Scalar bosons under the influence of noninertial effects in the cosmic string spacetime,” The European Physical Journal C, vol. 77, no. 3. pp 1-7, 2017.
  • [23] E. J. Post, “Sagnac Effect,” Reviews of Modern Physics, vol. 39, no. 2. pp 475-493, 1967.
  • [24] B. Mashhoon, “Neutron interferometry in a rotating frame of reference,” Physical Review Letters, vol. 61, no. 23. pp 2639- 2642, 1988.
  • [25] F. W. Hehl and W. T. Ni, “Inertial effects of a Dirac particle,” Physical Review D, vol. 42, no. 6. pp 2045-2048, 1990.
  • [26] S. A. Werner, J. L. Staudenmann and R. Corella, “Effects of Earth’s rotation on the Quantum Mechanical Phase of the Neutron,” Physical Review Letters, vol. 42, no. 17. pp 1103-1106, 1979.
  • [27] J. Q. Shen and S. L. He, “Geometric phases of electrons due to spin-rotation coupling in rotating molecules,” Physical Review B, vol. 68, no. 19. pp 195421, 2003.
  • [28] J. Q. Shen, S. L. He and F. Zhuang, “Aharonov-Carmi effect and energy shift of valence electrons in rotating molecules,” The European Physical Journal D, vol. 33, no. 1. pp 35-38, 2005.
  • [29] A. Guvendi, R. Sahin and Y. Sucu, “Exact solution of an exciton energy for a monolayer medium,” Scientific Reports, vol. 9, no. 1. pp 1-6, 2019.
  • [30] A. Guvendi, R. Sahin and Y. Sucu, “Binding energy and decaytime of exciton in dielectric medium,” The European Physical Journal B, vol. 94, no. 1. pp 1-7, 2021.
  • [31] A. Guvendi and S. G. Doğan, “Relativistic Dynamics of Oppositely charged Two Fermions Interacting with External Uniform Magnetic Field,” Few-Body Systems, vol. 62, no. 1. pp 1-8, 2021.
  • [32] A. Boumali, “One-dimensional thermal properties of the Kemmer oscillator,” Physica Scripta, vol. 76, no. 6. pp 669, 2007.
  • [33] M. H. Pacheco, R. R. Landim and C. A. S. Almeida, “One-dimensional Dirac oscillator in a thermal bath,” Physics Letters A, vol. 311, no. 2-3. pp 93-96, 2003.
There are 33 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Abdullah Guvendi 0000-0003-0564-9899

Publication Date June 30, 2021
Submission Date April 7, 2021
Acceptance Date May 7, 2021
Published in Issue Year 2021

Cite

APA Guvendi, A. (2021). Effects of Rotating Frame on a Vector Boson Oscillator. Sakarya University Journal of Science, 25(3), 834-840. https://doi.org/10.16984/saufenbilder.911340
AMA Guvendi A. Effects of Rotating Frame on a Vector Boson Oscillator. SAUJS. June 2021;25(3):834-840. doi:10.16984/saufenbilder.911340
Chicago Guvendi, Abdullah. “Effects of Rotating Frame on a Vector Boson Oscillator”. Sakarya University Journal of Science 25, no. 3 (June 2021): 834-40. https://doi.org/10.16984/saufenbilder.911340.
EndNote Guvendi A (June 1, 2021) Effects of Rotating Frame on a Vector Boson Oscillator. Sakarya University Journal of Science 25 3 834–840.
IEEE A. Guvendi, “Effects of Rotating Frame on a Vector Boson Oscillator”, SAUJS, vol. 25, no. 3, pp. 834–840, 2021, doi: 10.16984/saufenbilder.911340.
ISNAD Guvendi, Abdullah. “Effects of Rotating Frame on a Vector Boson Oscillator”. Sakarya University Journal of Science 25/3 (June 2021), 834-840. https://doi.org/10.16984/saufenbilder.911340.
JAMA Guvendi A. Effects of Rotating Frame on a Vector Boson Oscillator. SAUJS. 2021;25:834–840.
MLA Guvendi, Abdullah. “Effects of Rotating Frame on a Vector Boson Oscillator”. Sakarya University Journal of Science, vol. 25, no. 3, 2021, pp. 834-40, doi:10.16984/saufenbilder.911340.
Vancouver Guvendi A. Effects of Rotating Frame on a Vector Boson Oscillator. SAUJS. 2021;25(3):834-40.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.