Research Article
BibTex RIS Cite
Year 2022, , 474 - 487, 30.06.2022
https://doi.org/10.16984/saufenbilder.947632

Abstract

Supporting Institution

TÜBİTAK

Project Number

111E195

References

  • [1] F. Butti, P. Bruschi, M. Piotto, “A chopper modulated low noise instrumentation amplifier for MEMS thermal sensors interfacing”, 2011 7th Conference on Ph. D. Research in Microelectronics and Electronics, Madonna di Campiglio, Italy, 2011, pp. 133–136.
  • [2] A. N. Mohamed, H. N. Ahmed, M. Elkhatib, K. A. Shehata, “A low power low noise capacitively coupled chopper instrumentation amplifier in 130 nm CMOS for portable biopotential acquisiton systems”, 2013 International Conference on Computer Medical Applications (ICCMA), Sousse, Tunisia, 2013, pp. 1–5.
  • [3] Y. Ando, N. H. Fletcher, M. R. Schroeder, “Modern Acoustics and Signal Processing”, pp. 12–13, 2007.
  • [4] J. Wu, G. K. Fedder, L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-µg/√Hz monolithic CMOS MEMS accelerometer”, IEEE Journal of Solid-State Circuits, vol. 39, no. 5, pp. 722–730, 2004.
  • [5] R. Wu,, J. H. Huijsing, K. A. Makinwa, “Precision instrumentation amplifiers and read-out integrated circuits”, Springer Science & Business Media, 2012.
  • [6] J.F. Witte, “Dynamic offset compensated CMOS amplifiers” EEMCS, Delft University of Technology, 2008, p.178.
  • [7] A. Sarrafinazhad, I. Kara, F. Baskaya, “Design of blocks for a Field Programmable Mixed Array (FPMA)”, 2015 IEEE East-West Design Test Symposium (EWDTS), 2015, pp. 1–6.
  • [8] P. E. Allen, D. R. Holberg, “CMOS analog circuit design”, Elsevier, 2011.
  • [9] Q. Fan, K. A. Makinwa, J. H. Huijsing, “Capacitively-Coupled Chopper Amplifiers” Springer, 2017.
  • [10] P. R. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer, “Analysis and design of analog integrated circuits” John Wiley & Sons, 2009.
  • [11] A. Lewinski and J. Silva-Martinez, “OTA linearity enhancement technique for high frequency applications with IM3 below -65dB”, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003, pp. 9–12.
  • [12] J. L. L. Ochoa, E. M. Guerrero, E. J. Hernandez, “A 3rd order OTA-C low pass filter for W-CDMA standard applications in zero-IF receiver”, CONIELE-COMP 2013, 23rd International Conference on Electronics, Communications and Computing, 2013, pp. 249–253.
  • [13] A. Sarrafinazhad, I. Kara, F. Baskaya, “Design of a digitally tunable 5th order GM-C filter using linearized OTA in 90nm CMOS technology”, 2015 International Symposium on Signals, Circuits and Systems (ISSCS), 2015, pp. 1–4.

A Configurable Interface for Analog Sensor Outputs

Year 2022, , 474 - 487, 30.06.2022
https://doi.org/10.16984/saufenbilder.947632

Abstract

Reading out analog sensor outputs can be a challenging task at low frequencies because of the low frequency noise. To obtain a sensor signal clearly, special interface circuits are required. By using such circuits, analog signals are cleaned from offset, drift and 1/f noise. Besides, if the interface circuitry is configurable, it can be possible to interface to inputs at different frequency ranges. At the interface block, analog sensor output signal is moved to a frequency band where low frequency noise effects are not dominant by using chopping modulation technique. The frequency-shifted signal is then filtered using various filter types. To remove the low frequency noise before moving the signal back to the original band, Gm-C filter is used. The entire topology can be configured by a 5-bit digital to analog converter (DAC) called Biasing DAC (BDAC). This allows us to digitally change the biasing current of operational transconductance amplifiers (OTA), so that OTA based amplifiers and filters can operate at different frequency ranges. As conclusion, a configurable analog sensor interface has been designed. The design and layouts have been realized and simulated in Cadence Virtuoso using UMC 130nm CMOS technology.

Project Number

111E195

References

  • [1] F. Butti, P. Bruschi, M. Piotto, “A chopper modulated low noise instrumentation amplifier for MEMS thermal sensors interfacing”, 2011 7th Conference on Ph. D. Research in Microelectronics and Electronics, Madonna di Campiglio, Italy, 2011, pp. 133–136.
  • [2] A. N. Mohamed, H. N. Ahmed, M. Elkhatib, K. A. Shehata, “A low power low noise capacitively coupled chopper instrumentation amplifier in 130 nm CMOS for portable biopotential acquisiton systems”, 2013 International Conference on Computer Medical Applications (ICCMA), Sousse, Tunisia, 2013, pp. 1–5.
  • [3] Y. Ando, N. H. Fletcher, M. R. Schroeder, “Modern Acoustics and Signal Processing”, pp. 12–13, 2007.
  • [4] J. Wu, G. K. Fedder, L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-µg/√Hz monolithic CMOS MEMS accelerometer”, IEEE Journal of Solid-State Circuits, vol. 39, no. 5, pp. 722–730, 2004.
  • [5] R. Wu,, J. H. Huijsing, K. A. Makinwa, “Precision instrumentation amplifiers and read-out integrated circuits”, Springer Science & Business Media, 2012.
  • [6] J.F. Witte, “Dynamic offset compensated CMOS amplifiers” EEMCS, Delft University of Technology, 2008, p.178.
  • [7] A. Sarrafinazhad, I. Kara, F. Baskaya, “Design of blocks for a Field Programmable Mixed Array (FPMA)”, 2015 IEEE East-West Design Test Symposium (EWDTS), 2015, pp. 1–6.
  • [8] P. E. Allen, D. R. Holberg, “CMOS analog circuit design”, Elsevier, 2011.
  • [9] Q. Fan, K. A. Makinwa, J. H. Huijsing, “Capacitively-Coupled Chopper Amplifiers” Springer, 2017.
  • [10] P. R. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer, “Analysis and design of analog integrated circuits” John Wiley & Sons, 2009.
  • [11] A. Lewinski and J. Silva-Martinez, “OTA linearity enhancement technique for high frequency applications with IM3 below -65dB”, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003, pp. 9–12.
  • [12] J. L. L. Ochoa, E. M. Guerrero, E. J. Hernandez, “A 3rd order OTA-C low pass filter for W-CDMA standard applications in zero-IF receiver”, CONIELE-COMP 2013, 23rd International Conference on Electronics, Communications and Computing, 2013, pp. 249–253.
  • [13] A. Sarrafinazhad, I. Kara, F. Baskaya, “Design of a digitally tunable 5th order GM-C filter using linearized OTA in 90nm CMOS technology”, 2015 International Symposium on Signals, Circuits and Systems (ISSCS), 2015, pp. 1–4.
There are 13 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Baran Demirer 0000-0003-3013-4782

Faik Başkaya 0000-0001-6743-3992

Project Number 111E195
Publication Date June 30, 2022
Submission Date June 4, 2021
Acceptance Date April 17, 2022
Published in Issue Year 2022

Cite

APA Demirer, B., & Başkaya, F. (2022). A Configurable Interface for Analog Sensor Outputs. Sakarya University Journal of Science, 26(3), 474-487. https://doi.org/10.16984/saufenbilder.947632
AMA Demirer B, Başkaya F. A Configurable Interface for Analog Sensor Outputs. SAUJS. June 2022;26(3):474-487. doi:10.16984/saufenbilder.947632
Chicago Demirer, Baran, and Faik Başkaya. “A Configurable Interface for Analog Sensor Outputs”. Sakarya University Journal of Science 26, no. 3 (June 2022): 474-87. https://doi.org/10.16984/saufenbilder.947632.
EndNote Demirer B, Başkaya F (June 1, 2022) A Configurable Interface for Analog Sensor Outputs. Sakarya University Journal of Science 26 3 474–487.
IEEE B. Demirer and F. Başkaya, “A Configurable Interface for Analog Sensor Outputs”, SAUJS, vol. 26, no. 3, pp. 474–487, 2022, doi: 10.16984/saufenbilder.947632.
ISNAD Demirer, Baran - Başkaya, Faik. “A Configurable Interface for Analog Sensor Outputs”. Sakarya University Journal of Science 26/3 (June 2022), 474-487. https://doi.org/10.16984/saufenbilder.947632.
JAMA Demirer B, Başkaya F. A Configurable Interface for Analog Sensor Outputs. SAUJS. 2022;26:474–487.
MLA Demirer, Baran and Faik Başkaya. “A Configurable Interface for Analog Sensor Outputs”. Sakarya University Journal of Science, vol. 26, no. 3, 2022, pp. 474-87, doi:10.16984/saufenbilder.947632.
Vancouver Demirer B, Başkaya F. A Configurable Interface for Analog Sensor Outputs. SAUJS. 2022;26(3):474-87.