Effect of Microchannel Dimensions in Electrochemical Impedance Spectroscopy Using Gold Microelectrode
Year 2022,
, 120 - 127, 28.02.2022
Hamed Ghorbanpoor
,
Damion Corrigan
,
Fatma Doğan Guzel
Abstract
Microfluidic chip systems have been an area of interest for lab-on-a-chip and organ-on-a-chip studies in recent years. These chips have many advantages such as high efficiency, low sample consumption, fast analysis, durability and low cost. Today, electrochemical sensors are frequently applied in microfluidic chips because of their potential for label-free detection and low-cost production. A commonly employed electrochemical technique is electrochemical impedance spectroscopy (EIS), which captures changes in phase and amplitude as signal passes through the system under test. In the utilization of microelectrodes within microfluidic channels, noise becomes a problem in EIS measurements. In this study, EIS measurements were performed using microfluidic chips with various dimensions of width while the properties and dimensions of the microelectrodes were kept constant. It was found that the results of cyclic voltammetry (CV) cleaning and EIS experiments deteriorated when smaller than 1 mm wide-microchannels were integrated onto 100 µm wide microelectrodes. These finding sets the basics for on-chip electrochemistry experiments using microfluidic integrated microelectrodes and therefore is fundamentally important in future on-chip EIS measurements.
Supporting Institution
TÜBİTAK
Thanks
This study was conducted in the frame of Newton Katip Celebi Fund between Turkey and UK and supported by Turkish Scientific and Technological Council under the grant number of 217S793. We thank Prof. Dr. I. A. Ince and Prof. Dr. Tanil Kocagoz, and Prof. Dr. Huseyin Avci for their useful discussions.
References
- [1] S. O. Akbulut, H. Ghorbanpoor, B. Ö. İpteç, A. Butterworth, G. Avcıoğlu, L. D. Kozacı, G. Topateş, D. K. Corrigan, H. Avcı, and F. D. Güzel, “Impedance testing of porous Si3N4 scaffolds for skeletal implant applications,” Applied Sciences, vol. 2, no. 5, pp. 1-6, 2020.
- [2] E. O. Blair, S. Hannah, V. Vezza, H. Avcı, T. Kocagoz, P. A. Hoskisson, F. D. Güzel, and D. K. Corrigan, “Biologically modified microelectrode sensors provide enhanced sensitivity for detection of nucleic acid sequences from Mycobacterium tuberculosis,” Sensors and Actuators Reports, vol. 2, no. 1, pp. 100008, 2020.
- [3] A. Gencoglu, and A. R. Minerick, “Electrochemical detection techniques in micro-and nanofluidic devices,” Microfluidics and nanofluidics, vol. 17, no. 5, pp. 781-807, 2014.
- [4] F. D. Güzel, H. Ghorbanpoor, A. N. Dizaji, I. Akcakoca, Y. Ozturk, T. Kocagoz, D. K. Corrigan, H. Avci, “Label‐free molecular detection of antibiotic susceptibility for Mycobacterium smegmatis using a low cost electrode format,” 2020.
- [5] Z. Taleat, A. Khoshroo, and M. Mazloum-Ardakani, “Screen-printed electrodes for biosensing: a review (2008–2013),” Microchimica Acta, vol. 181, no. 9-10, pp. 865-891, 2014.
- [6] F. D. Güzel, B. Miles, “Development of in-flow label-free single molecule sensors using planar solid-state nanopore integrated microfluidic devices,” Micro & Nano Letters, vol. 13, no. 9, pp. 1352-1357, 2018.
- [7] S. Schneider, D. Gruner, A. Richter, and P. Loskill, “Membrane Integration into PDMS-free Microfluidic Platforms for Organ-on-Chip and Analytical Chemistry Applications,” Lab on a Chip, 2021.
- [8] H. L. Woodvine, J. G. Terry, A. J. Walton, and A. R. Mount, “The development and characterisation of square microfabricated electrode systems,” Analyst, vol. 135, no. 5, pp. 1058-1065, 2010.
- [9] D. W. Arrigan, “Nanoelectrodes, nanoelectrode arrays and their applications,” Analyst, vol. 129, no. 12, pp. 1157-1165, 2004.
- [10] S. Gu, Y. Lu, Y. Ding, L. Li, H. Song, J. Wang, Q. Wu, and Bioelectronics, “A droplet-based microfluidic electrochemical sensor using platinum-black microelectrode and its application in high sensitive glucose sensing,” Biosensors and Bioelectronics, vol. 55, pp. 106-112, 2014.
- [11] G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications,” Sensors, vol. 15, no. 12, pp. 30011-30031, 2015.
- [12] X. J. Huang, A. M. O'Mahony, and R. G. Compton, “Microelectrode arrays for electrochemistry: approaches to fabrication,” Small, vol. 5, no. 7, pp. 776-788, 2009.
- [13] D. K. Corrigan, E. O. Blair, J. G. Terry, A. J. Walton, and A. R. Mount, “Enhanced electroanalysis in lithium potassium eutectic (LKE) using microfabricated square microelectrodes,” Analytical chemistry, vol. 86, no. 22, pp. 11342-11348, 2014.
- [14] G. Lee, J. Lee, J. Kim, H. S. Choi, J. Kim, S. Lee, and H. Lee, “Single microfluidic electrochemical sensor system for simultaneous multi-pulmonary hypertension biomarker analyses,” Scientific reports, vol. 7, no. 1, pp. 1-8, 2017.
- [15] Z. Lin, Y. Takahashi, Y. Kitagawa, T. Umemura, H. Shiku, and T. Matsue, “An addressable microelectrode array for electrochemical detection,” Analytical chemistry, vol. 80, no. 17, pp. 6830-6833, 2008.
- [16] P. Cui, and S. Wang, “Application of microfluidic chip technology in pharmaceutical analysis: A review,” Journal of pharmaceutical analysis, vol. 9, no. 4, pp. 238-247, 2019.
- [17] A. N. Dizaji, Y. Ozturk, H. Ghorbanpoor, A. Cetak, I. Akcakoca, T. Kocagoz, H. Avci, D. Corrigan, and F. D. Güzel, “Investigation of the effect of channel structure and flow rate on on-chip bacterial lysis,” IEEE Transactions on NanoBioscience, vol. 20, no. 1, pp. 86-91, 2020.
- [18] J. Kaur, H. Ghorbanpoor, Y. Öztürk, Ö. Kaygusuz, H. Avcı, C. Darcan, L. Trabzon, and F. D. Güzel, “On‐chip label‐free impedance‐based detection of antibiotic permeation,” IET Nanobiotechnology, vol. 15, no. 1, pp. 100-106, 2021.
- [19] M. Vestergaard, K. Kerman, and E. Tamiya, “An overview of label-free electrochemical protein sensors,” Sensors, vol. 7, no. 12, pp. 3442-3458, 2007.
- [20] S. Kounaves, "Voltammetric techniques," Prentice Hall, Upper Saddle River, NJ, USA, 1997, pp. 709-726.
- [21] A. N. Dizaji, Z. Ali, H. Ghorbanpoor, Y. Ozturk, I. Akcakoca, H. Avci, and F. D. Guzel, “Electrochemical-based ‘‘antibiotsensor’’for the whole-cell detection of the vancomycin-susceptible bacteria,” Talanta, vol. 234, pp. 122695, 2021.
- [22] M.-C. Horny, M. Lazerges, J.-M. Siaugue, A. Pallandre, D. Rose, F. Bedioui, C. Deslouis, A.-M. Haghiri-Gosnet, and J. Gamby, “Electrochemical DNA biosensors based on long-range electron transfer: investigating the efficiency of a fluidic channel microelectrode compared to an ultramicroelectrode in a two-electrode setup,” Lab on a Chip, vol. 16, no. 22, pp. 4373-4381, 2016.
- [23] H. E. Ayliffe, A. B. Frazier, and R. D. Rabbitt, “Electric impedance spectroscopy using microchannels with integrated metal electrodes,” Journal of Microelectromechanical systems, vol. 8, no. 1, pp. 50-57, 1999.
Year 2022,
, 120 - 127, 28.02.2022
Hamed Ghorbanpoor
,
Damion Corrigan
,
Fatma Doğan Guzel
References
- [1] S. O. Akbulut, H. Ghorbanpoor, B. Ö. İpteç, A. Butterworth, G. Avcıoğlu, L. D. Kozacı, G. Topateş, D. K. Corrigan, H. Avcı, and F. D. Güzel, “Impedance testing of porous Si3N4 scaffolds for skeletal implant applications,” Applied Sciences, vol. 2, no. 5, pp. 1-6, 2020.
- [2] E. O. Blair, S. Hannah, V. Vezza, H. Avcı, T. Kocagoz, P. A. Hoskisson, F. D. Güzel, and D. K. Corrigan, “Biologically modified microelectrode sensors provide enhanced sensitivity for detection of nucleic acid sequences from Mycobacterium tuberculosis,” Sensors and Actuators Reports, vol. 2, no. 1, pp. 100008, 2020.
- [3] A. Gencoglu, and A. R. Minerick, “Electrochemical detection techniques in micro-and nanofluidic devices,” Microfluidics and nanofluidics, vol. 17, no. 5, pp. 781-807, 2014.
- [4] F. D. Güzel, H. Ghorbanpoor, A. N. Dizaji, I. Akcakoca, Y. Ozturk, T. Kocagoz, D. K. Corrigan, H. Avci, “Label‐free molecular detection of antibiotic susceptibility for Mycobacterium smegmatis using a low cost electrode format,” 2020.
- [5] Z. Taleat, A. Khoshroo, and M. Mazloum-Ardakani, “Screen-printed electrodes for biosensing: a review (2008–2013),” Microchimica Acta, vol. 181, no. 9-10, pp. 865-891, 2014.
- [6] F. D. Güzel, B. Miles, “Development of in-flow label-free single molecule sensors using planar solid-state nanopore integrated microfluidic devices,” Micro & Nano Letters, vol. 13, no. 9, pp. 1352-1357, 2018.
- [7] S. Schneider, D. Gruner, A. Richter, and P. Loskill, “Membrane Integration into PDMS-free Microfluidic Platforms for Organ-on-Chip and Analytical Chemistry Applications,” Lab on a Chip, 2021.
- [8] H. L. Woodvine, J. G. Terry, A. J. Walton, and A. R. Mount, “The development and characterisation of square microfabricated electrode systems,” Analyst, vol. 135, no. 5, pp. 1058-1065, 2010.
- [9] D. W. Arrigan, “Nanoelectrodes, nanoelectrode arrays and their applications,” Analyst, vol. 129, no. 12, pp. 1157-1165, 2004.
- [10] S. Gu, Y. Lu, Y. Ding, L. Li, H. Song, J. Wang, Q. Wu, and Bioelectronics, “A droplet-based microfluidic electrochemical sensor using platinum-black microelectrode and its application in high sensitive glucose sensing,” Biosensors and Bioelectronics, vol. 55, pp. 106-112, 2014.
- [11] G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, “Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications,” Sensors, vol. 15, no. 12, pp. 30011-30031, 2015.
- [12] X. J. Huang, A. M. O'Mahony, and R. G. Compton, “Microelectrode arrays for electrochemistry: approaches to fabrication,” Small, vol. 5, no. 7, pp. 776-788, 2009.
- [13] D. K. Corrigan, E. O. Blair, J. G. Terry, A. J. Walton, and A. R. Mount, “Enhanced electroanalysis in lithium potassium eutectic (LKE) using microfabricated square microelectrodes,” Analytical chemistry, vol. 86, no. 22, pp. 11342-11348, 2014.
- [14] G. Lee, J. Lee, J. Kim, H. S. Choi, J. Kim, S. Lee, and H. Lee, “Single microfluidic electrochemical sensor system for simultaneous multi-pulmonary hypertension biomarker analyses,” Scientific reports, vol. 7, no. 1, pp. 1-8, 2017.
- [15] Z. Lin, Y. Takahashi, Y. Kitagawa, T. Umemura, H. Shiku, and T. Matsue, “An addressable microelectrode array for electrochemical detection,” Analytical chemistry, vol. 80, no. 17, pp. 6830-6833, 2008.
- [16] P. Cui, and S. Wang, “Application of microfluidic chip technology in pharmaceutical analysis: A review,” Journal of pharmaceutical analysis, vol. 9, no. 4, pp. 238-247, 2019.
- [17] A. N. Dizaji, Y. Ozturk, H. Ghorbanpoor, A. Cetak, I. Akcakoca, T. Kocagoz, H. Avci, D. Corrigan, and F. D. Güzel, “Investigation of the effect of channel structure and flow rate on on-chip bacterial lysis,” IEEE Transactions on NanoBioscience, vol. 20, no. 1, pp. 86-91, 2020.
- [18] J. Kaur, H. Ghorbanpoor, Y. Öztürk, Ö. Kaygusuz, H. Avcı, C. Darcan, L. Trabzon, and F. D. Güzel, “On‐chip label‐free impedance‐based detection of antibiotic permeation,” IET Nanobiotechnology, vol. 15, no. 1, pp. 100-106, 2021.
- [19] M. Vestergaard, K. Kerman, and E. Tamiya, “An overview of label-free electrochemical protein sensors,” Sensors, vol. 7, no. 12, pp. 3442-3458, 2007.
- [20] S. Kounaves, "Voltammetric techniques," Prentice Hall, Upper Saddle River, NJ, USA, 1997, pp. 709-726.
- [21] A. N. Dizaji, Z. Ali, H. Ghorbanpoor, Y. Ozturk, I. Akcakoca, H. Avci, and F. D. Guzel, “Electrochemical-based ‘‘antibiotsensor’’for the whole-cell detection of the vancomycin-susceptible bacteria,” Talanta, vol. 234, pp. 122695, 2021.
- [22] M.-C. Horny, M. Lazerges, J.-M. Siaugue, A. Pallandre, D. Rose, F. Bedioui, C. Deslouis, A.-M. Haghiri-Gosnet, and J. Gamby, “Electrochemical DNA biosensors based on long-range electron transfer: investigating the efficiency of a fluidic channel microelectrode compared to an ultramicroelectrode in a two-electrode setup,” Lab on a Chip, vol. 16, no. 22, pp. 4373-4381, 2016.
- [23] H. E. Ayliffe, A. B. Frazier, and R. D. Rabbitt, “Electric impedance spectroscopy using microchannels with integrated metal electrodes,” Journal of Microelectromechanical systems, vol. 8, no. 1, pp. 50-57, 1999.