Research Article
BibTex RIS Cite

Kalibre edilmiş ve doğrulanmış 1D ve 1D/2D model kullanılarak Cedar Nehri taşkın yayılım alanlarının tespiti

Year 2016, Volume: 20 Issue: 2, 337 - 347, 01.08.2016
https://doi.org/10.16984/saufenbilder.54874

Abstract

2008 yılında Iowa eyaletinin büyük bir bölümünde meydana gelen taşkın birçok konut ve işyerinin hasar görmesine ve birçok can kaybına yol açmıştır. Meydana gelen toplam hasar $10 milyar olarak tahmin edilmektedir. Taşkından etkilen şehirlerden biriside Cedar Nehri’nın tam ortasından aktığı Waverly dir. Waverly için, yüksek çözünürlüklü 1 boyutlu ve 2 boyutlu modelin birlikte çalıştırılması ile elde edilmiş hidrodinamik model geliştirilmiştir. Modelin geliştirilmesi amacıyla kanal geometrisi, batimetrik arazi çalışması ile topoğrafi datası Lidar (Light Detection and Ranging) yüzey topoğrafisi temini çalışmaları ile oluşturulmuştur. Pürüzlülük katsayıları ise “National Land Cover Dataset”  arazi kullanım haritaları ve hava fotoğraflarından yararlanılarak tahmin edilmiştir.  Hidrodinamik taşkın modeli, 2008 yılı taşkını ile kalibre edilmiştir. Nehir yatağının kalibrasyon ve doğrulaması  taşkın sonrasında ölçülen maksimum su seviyeleri kullanılarak yapılmıştır. Taşkın yatağındaki yayılımın  kalibrasyonu ve doğrulaması ise taşkın esnasında uçaktan çekilmiş olan fotoğrafların mukayesesi  ile  gerçekleştirilmiştir. Yapılan doğrulamalar sonucu en iyi model seçilmiş, bu model kullanılarak gelmesi muhtemel taşkınların yayılım alanları hesaplanmıştır. Elde edilen taşkın yayılım haritaları ile Waverly şehir plancılarının ve sakinlerinin potansiyel taşkın riskini bilerek buna göre kararlar almaları konusunda yardımcı olacağı düşünülmektedir.

References

  • DOSWELL, III C. A., BROOKS H. E. VE MADDOX R. A., Flash Flood Forecasting: An Ingredients-Based Methodology, Weather and Forecasting, 11, 560-581, 1996.
  • HANKİN, B., WALLER, S., ASTLE, G. VE KELLAGHER, R.,. Mapping Space For Water: Screening For Urban Flash Flooding, J. Flood Risk Manage., 1, 13–22, 2008.
  • MOORE, J.T., S.M. NOLAN, F.H. GLASS, FERRY D.L. VE ROCHETTE S.M., Flash Flood-Producing High-Precipitation Supercells in Missouri. Preprints, 14th Conf. Wea. Analysis and Forecasting Amer. Meteor. Soc., (J4)7-12, 1995.
  • MCLIN, S.G., SPRINGER, E.P., LANE, L.J., Predicting Floodplain Boundary Changes Following the Cerro Grande Wildfire, Hydrological Processes, 15: 2967–2980, 2001.
  • TATE E.C., MAIDMENT D.R., OLIVERA F., ANDERSON D.J., Creating a Terrain Model for Floodplain Mapping, Journal of Hydrologic Engineering, 7: 100-108, 2002.
  • AGGETT, G.R., WİLSON, J.P., Creating and Coupling a High-Resolution DTM with a 1-D Hydraulic Model in a GIS for Scenario-Based Assessment of Avulsion Hazard in a Gravel-Bed River, Geomorphology, 113: 21-34, 2009.
  • BAGA, İ., USUL, N., SORMAN, Ü., Application of MIKE 11 Model on Çayboğazı Basin in Turkey, DHI Third User Conferance, Denmark, 1999.
  • USUL, N. ve TURAN, B., Flood Forecasting and Analysis within the Ulus Basin, Turkey, Using Geographic Information Systems, Natural Hazards, 39, 213-229, 2006.
  • AKAR, I., MAKTAV, D., KALKAN, K., OZDEMİR, Y., “Determination of Land Use Effects on Flood Risk by Using Integration of GIS and Remote Sensing”, RAST 2009: Proceedings of the 4th International Conference on Recent Advances In Space Technologies, 23-26, 2009.
  • SOLAIMANI, K., Flood Forecasting Based on Geographical Information System, African Journal of Agricultural Research, 4 (10): 950-956, 2009.
  • FRANQUES J.T., YANNITELLI D.W., Two dimensional analysis of backwater at bridges, Intl Hydr Div ASCE 100 HY3: 379-392, 1974.
  • BATES, P.D., DE ROO. A.P.J, A Simple Raster-Based Model For Flood İnundation Simulation. Journal of Hydrology,54-77, 2000.
  • CUNGE, J. A.,. HOLLY F. M., VERWEY A., Practical Aspects of Computational River Hydraulics. London: Pitman Publishing Limited, 1980.
  • HEC., HEC-RAS 4.0 Hydraulic Reference Manual., Hydrologic Engineering Center Website. Accessed: 30 May 2012.
  • FREAD, D.L., Numerical properties of implicit fourpoint finite difference equations of unsteady flow: Silver Spring, MD., National Weather Service, NOAA Technical Memorandum NWS HYDRO18, 38, 1974.
  • LIGGETT, J.A., CUNGE, J.A., Numerical method of solution of the unsteady flow equations, Water Resources Publ.,Vol:1, 1975.
  • DHI, MIKE 11 Reference Manual. MIKE by DHI, 2009.
  • HUNTER, N. M., BATES, P.D., HORRITT, M.S., WİLSON, M.D., Simple spatially-distrubuted models for predicting flood inundation: A review, Geomorphology, 208-225, 2007.
  • LAI, Y.G. Two-Dimensional Depth-Averaged Flow Modeling with an Unstructured Hybrid Mesh. Denver: Bureau of Reclamation Sedimentation and River Hydraulics Group, 2009.
  • COOK A., MERWADE, V., Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping, Journal of Hydrology, 377,131-142, 2009.
  • SYME, W.J., PINNELL M.G., WICKS, J.M., Modelling Flood Inundation of Urban Area in the UK Using 2D / 1D Hydraulic Models, Proceedings of the 8th National Conference on Hydraulics in Water Engineering, The Institution of Engineers, Australia, 2004.
  • HORRITT, M.S., BATES P.D., Effects of Spatial Resolution on A Raster Based Model of Flood Flow, Journal of Hydrology: 239-249, 2001.
  • FRANK, E.A., OSTAN, A., COCCATO, M., STELLING, G.S., Use Of An İntegrated One-Dimensional/ Two-Dimensional Hydraulic Modeling Approach For Flood Hazard and Risk Mapping. In River Basin Management, by R.A. Falconer and W.R. Blain, 99-108, 2001.
  • PATRO, S., CHATTERJEE, C., MOHANTY, S., SINGH, R., RAGHUWANSHI, N.S., Flood inundation modeling using MIKE FLOOD and remote sensing data, Journal of the Indian Society of Remote Sensing, Volume 37, Issue 1, pp 107-118, 2009.

Determination of flood inundation area in Cedar River using calibrated and validated 1D and 1D/2D model

Year 2016, Volume: 20 Issue: 2, 337 - 347, 01.08.2016
https://doi.org/10.16984/saufenbilder.54874

Abstract

In 2008 flooding occurred over a majority of Iowa, damaging homes, displacing residents, and taking lives. Estimated damages to the state totaled $10 billion. One of the city affected by the flood was Waverly City, USA which is the Cedar River flow in side of it.   One-dimensional/two-dimensional (1D/2D)-Mike Flood hydrodynamic model and 1D-HecRAS hydraulic model were developed for flood analyses in Waverly City. For developing both models, channel geometry was obtained from bathymetric surveys and combined with surface topography obtained from Light Detection and Ranging surveys. Roughness parameters were estimated using land use data from the National Land Cover Dataset and aerial photos. Calibration of roughness on floodplain and channels represents an important issue to determine flood inundation area. Both models were calibrated and validated with 2008 flood. The riverbed was validated with high water levels measured after flood. The floodplain was validated with photos, which was taken during flood from airplane. After calibration and validation, results were compared to choose the best one. Return period flood discharge were calculated and run with best inundation model for determine flood inundation maps. These maps can be used by residents and planners in Waverly City to help make informed decisions about potential risk from floods.

References

  • DOSWELL, III C. A., BROOKS H. E. VE MADDOX R. A., Flash Flood Forecasting: An Ingredients-Based Methodology, Weather and Forecasting, 11, 560-581, 1996.
  • HANKİN, B., WALLER, S., ASTLE, G. VE KELLAGHER, R.,. Mapping Space For Water: Screening For Urban Flash Flooding, J. Flood Risk Manage., 1, 13–22, 2008.
  • MOORE, J.T., S.M. NOLAN, F.H. GLASS, FERRY D.L. VE ROCHETTE S.M., Flash Flood-Producing High-Precipitation Supercells in Missouri. Preprints, 14th Conf. Wea. Analysis and Forecasting Amer. Meteor. Soc., (J4)7-12, 1995.
  • MCLIN, S.G., SPRINGER, E.P., LANE, L.J., Predicting Floodplain Boundary Changes Following the Cerro Grande Wildfire, Hydrological Processes, 15: 2967–2980, 2001.
  • TATE E.C., MAIDMENT D.R., OLIVERA F., ANDERSON D.J., Creating a Terrain Model for Floodplain Mapping, Journal of Hydrologic Engineering, 7: 100-108, 2002.
  • AGGETT, G.R., WİLSON, J.P., Creating and Coupling a High-Resolution DTM with a 1-D Hydraulic Model in a GIS for Scenario-Based Assessment of Avulsion Hazard in a Gravel-Bed River, Geomorphology, 113: 21-34, 2009.
  • BAGA, İ., USUL, N., SORMAN, Ü., Application of MIKE 11 Model on Çayboğazı Basin in Turkey, DHI Third User Conferance, Denmark, 1999.
  • USUL, N. ve TURAN, B., Flood Forecasting and Analysis within the Ulus Basin, Turkey, Using Geographic Information Systems, Natural Hazards, 39, 213-229, 2006.
  • AKAR, I., MAKTAV, D., KALKAN, K., OZDEMİR, Y., “Determination of Land Use Effects on Flood Risk by Using Integration of GIS and Remote Sensing”, RAST 2009: Proceedings of the 4th International Conference on Recent Advances In Space Technologies, 23-26, 2009.
  • SOLAIMANI, K., Flood Forecasting Based on Geographical Information System, African Journal of Agricultural Research, 4 (10): 950-956, 2009.
  • FRANQUES J.T., YANNITELLI D.W., Two dimensional analysis of backwater at bridges, Intl Hydr Div ASCE 100 HY3: 379-392, 1974.
  • BATES, P.D., DE ROO. A.P.J, A Simple Raster-Based Model For Flood İnundation Simulation. Journal of Hydrology,54-77, 2000.
  • CUNGE, J. A.,. HOLLY F. M., VERWEY A., Practical Aspects of Computational River Hydraulics. London: Pitman Publishing Limited, 1980.
  • HEC., HEC-RAS 4.0 Hydraulic Reference Manual., Hydrologic Engineering Center Website. Accessed: 30 May 2012.
  • FREAD, D.L., Numerical properties of implicit fourpoint finite difference equations of unsteady flow: Silver Spring, MD., National Weather Service, NOAA Technical Memorandum NWS HYDRO18, 38, 1974.
  • LIGGETT, J.A., CUNGE, J.A., Numerical method of solution of the unsteady flow equations, Water Resources Publ.,Vol:1, 1975.
  • DHI, MIKE 11 Reference Manual. MIKE by DHI, 2009.
  • HUNTER, N. M., BATES, P.D., HORRITT, M.S., WİLSON, M.D., Simple spatially-distrubuted models for predicting flood inundation: A review, Geomorphology, 208-225, 2007.
  • LAI, Y.G. Two-Dimensional Depth-Averaged Flow Modeling with an Unstructured Hybrid Mesh. Denver: Bureau of Reclamation Sedimentation and River Hydraulics Group, 2009.
  • COOK A., MERWADE, V., Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping, Journal of Hydrology, 377,131-142, 2009.
  • SYME, W.J., PINNELL M.G., WICKS, J.M., Modelling Flood Inundation of Urban Area in the UK Using 2D / 1D Hydraulic Models, Proceedings of the 8th National Conference on Hydraulics in Water Engineering, The Institution of Engineers, Australia, 2004.
  • HORRITT, M.S., BATES P.D., Effects of Spatial Resolution on A Raster Based Model of Flood Flow, Journal of Hydrology: 239-249, 2001.
  • FRANK, E.A., OSTAN, A., COCCATO, M., STELLING, G.S., Use Of An İntegrated One-Dimensional/ Two-Dimensional Hydraulic Modeling Approach For Flood Hazard and Risk Mapping. In River Basin Management, by R.A. Falconer and W.R. Blain, 99-108, 2001.
  • PATRO, S., CHATTERJEE, C., MOHANTY, S., SINGH, R., RAGHUWANSHI, N.S., Flood inundation modeling using MIKE FLOOD and remote sensing data, Journal of the Indian Society of Remote Sensing, Volume 37, Issue 1, pp 107-118, 2009.
There are 24 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Osman Sönmez

Emrah Doğan

Publication Date August 1, 2016
Submission Date March 31, 2016
Acceptance Date May 16, 2016
Published in Issue Year 2016 Volume: 20 Issue: 2

Cite

APA Sönmez, O., & Doğan, E. (2016). Determination of flood inundation area in Cedar River using calibrated and validated 1D and 1D/2D model. Sakarya University Journal of Science, 20(2), 337-347. https://doi.org/10.16984/saufenbilder.54874
AMA Sönmez O, Doğan E. Determination of flood inundation area in Cedar River using calibrated and validated 1D and 1D/2D model. SAUJS. August 2016;20(2):337-347. doi:10.16984/saufenbilder.54874
Chicago Sönmez, Osman, and Emrah Doğan. “Determination of Flood Inundation Area in Cedar River Using Calibrated and Validated 1D and 1D/2D Model”. Sakarya University Journal of Science 20, no. 2 (August 2016): 337-47. https://doi.org/10.16984/saufenbilder.54874.
EndNote Sönmez O, Doğan E (August 1, 2016) Determination of flood inundation area in Cedar River using calibrated and validated 1D and 1D/2D model. Sakarya University Journal of Science 20 2 337–347.
IEEE O. Sönmez and E. Doğan, “Determination of flood inundation area in Cedar River using calibrated and validated 1D and 1D/2D model”, SAUJS, vol. 20, no. 2, pp. 337–347, 2016, doi: 10.16984/saufenbilder.54874.
ISNAD Sönmez, Osman - Doğan, Emrah. “Determination of Flood Inundation Area in Cedar River Using Calibrated and Validated 1D and 1D/2D Model”. Sakarya University Journal of Science 20/2 (August 2016), 337-347. https://doi.org/10.16984/saufenbilder.54874.
JAMA Sönmez O, Doğan E. Determination of flood inundation area in Cedar River using calibrated and validated 1D and 1D/2D model. SAUJS. 2016;20:337–347.
MLA Sönmez, Osman and Emrah Doğan. “Determination of Flood Inundation Area in Cedar River Using Calibrated and Validated 1D and 1D/2D Model”. Sakarya University Journal of Science, vol. 20, no. 2, 2016, pp. 337-4, doi:10.16984/saufenbilder.54874.
Vancouver Sönmez O, Doğan E. Determination of flood inundation area in Cedar River using calibrated and validated 1D and 1D/2D model. SAUJS. 2016;20(2):337-4.