Research Article
BibTex RIS Cite

Lityum iyon pil negatif elektrotlar için kabuk/çekirdek yapılı karbon kaplanmış silisyum tozların sentezi, karakterizasyonu ve elektrokimyasal performansı

Year 2017, Volume: 21 Issue: 3, 489 - 495, 01.06.2017
https://doi.org/10.16984/saufenbilder.272254

Abstract

Silisyum nanotoz yüzeyleri, poliakrilonitril (PAN) polimerinin pirolizi ile amorf karbon ile kaplanmıştır. Amorf
karbon kaplanmış siliyum tozların (Si-C) mikroyapı incelemeleri taramalı elektron mikroskobu (SEM) ile
gerçekleştirilmiş ve geçirimli elektron mikroskobu (TEM) ile karbon kaplama kalınlığı tayin edilmiştir. Enerji dağılım
X-ışınları spektroskopisi (EDS) ile Si-C tozlarının elementel analizleri yapılmıştır. Si-C tozlarının yapısal ve faz
analizleri X-ışınları difraktometresi (XRD) ve Raman spektroskopisi ile incelenmiştir. Üretilen Si-C tozlar bakır akım
toplayıcı üzerinde elektrot olarak hazırlanmış ve CR2016 düğme tipi hücreler kullanılarak 200 mA/g sabit akım
yoğunluğunda elektrokimyasal testleri gerçekleştirilmiştir. Elektrokimyasal test sonuçlarına göre, karbon kaplama
işlemi silisyum anotların hacim genleşmesinden kaynaklı problemleri azaltarak elektrokimyasal davranışlarını
iyileştirmiş ve 30 çevrim sonunda yaklaşık 770 mAh/g deşarj kapasitesi göstermiştir.

References

  • A. C. Zhang, Y. A. Ruixiang, Z. A. Tengfei, C. C. Zhixin, L. A. Huakun, G. Zaiping, “Mass Production Of Three Dimensional Hierarchical Microfibers Constructed From Silicon-Carbon Core-Shell Architectures With High-Performance Lithium Storage”, Carbon, cilt 72, pp. 169-175, Jun. 2014.
  • W. Junxiong, Q. Xianying, M. Cui, H. Yan-Bing, L. Gemeng, Z. Dong, L. Ming, H. Cuiping, L. Baohua, K. Feiyu, “Honeycomb-Cobweb Inspired Hierarchical Core-Shell Structure Design For Electrospun Silicon/Carbon Fibers As Lithium-Ion Battery Anodes”, Carbon, cilt 98, pp. 582-591, Mar. 2016.
  • Z. Xiang-Yang, T. Jing-Jing, Y. Juan, X. Jing, M. Lu-Lu, “Silicon@Carbon Hollow Core–Shell Heterostructures Novel Anode Materials For Lithium Ion Batteries”, Electrochim. Acta, cilt 87 pp. 663- 668, Jan. 2013.
  • T. Cetinkaya, M. Tokur, S. Ozcan, M. Uysal, H. Akbulut, “Graphene Supported -Mno2 Nanocomposite Cathodes For Lithium Ion Batteries”, Int. J. of Hydrogen Energ., cilt 41, pp. 6945-6953, May. 2016.
  • R. Yi , F. Dai , M. L. Gordin , H. Sohn, D. Wang, “Influence Of Silicon Nanoscale Building Blocks Size And Carbon Coating On The Performance Of Micro-Sized Si-C Composite Li-Ion Anodes”, Adv. Energy Mater., cilt 3, pp. 1507-1515, Jul. 2013.
  • L. Y. Yang, H. Z. Li, J. Liu, Z. Q. Sun, S. S. Tang, M. Lei, “Dual Yolk-Shell Structure Of Carbon and Silica-Coated Silicon For Highperformance Lithium-Ion Batteries”, Nature Scientific Reports, cilt 5, pp. 10908, Jun. 2015.
  • N. Liu, H. Wu, M. T. Mcdowell, Y. Yao, C. Wang, Y. Cui, “A Yolk-Shell Design For Stabilized And Scalable Li Ion Battery Alloy Anodes”, Nano Lett., cilt 12, pp. 3315-3321, May. 2012.
  • Y. Hwa, W. S. Kim, S. H. Hong, H. J. Sohn, “High Capacity And Rate Capability Of Core–Shell Structured Nano Si/C Anode For Li-Ion Batteries”, Electrochim. Acta, cilt 71, pp. 201-205, Jun. 2012.
  • J. Song, S. Chen, M. Zhou, T. Xu, D. Lv, M. L. Gordin, T. Long, M. Melnyk, D. Wang, “Micro-Sized Silicon– Carbon Composites Composed Of Carbon-Coated Sub-10 Nm Si Primary Particles As High-Performance Anode Materials For Lithium-Ion Batteries”, J. Mater. Chem. A, cilt 2, pp. 1257–1262, Jan. 2014.
  • S. Chen, M. L. Gordin, R. Yi, G. Howlett, H. Sohn, D. Wang, “Silicon Core–Hollow Carbon Shell Nanocomposites With Tunable Buffer Voids For High Capacity Anodes Of Lithium-Ion Batteries”, Phys. Chem. Chem. Phys., cilt 14, pp.12741-12745, Jul. 2012 .
  • S. A. Klankowski, R. A. Rojeski, B. A. Cruden, J. Liu, J. Wud, J. Li, “A High-Performance Lithium-Ion Battery Anode Based On The Core–Shell Heterostructure Of Silicon-Coated Vertically Aligned Carbon Nanofibers”, J.Mater. Chem. A, cilt 1, pp. 1055-1064, Apr. 2013.
  • Y. Chen, Y. Hu, J. Shao, Z. Shen, R. Chen, X. Zhang, X. He, Y. Song, X. Xing, “Pyrolytic Carbon-Coated Silicon/Carbon Nanofiber Composite Anodes For High-Performance Lithium-Ion Batteries”, J. Power Sources, cilt 298, pp. 130-137, Dec. 2015.
  • A. Weiqunli, A. Qianwang, B. Kecao, A. Jingjingtang, C. Hongtaowang, A. N. Liminzhou, Y. Haimin, “Mechanics-Based Optimization Of Yolk-Shell Carbon-Coated Silicon Nanoparticle As Electrode Materials For High Capacity Lithium Ion Battery”, Composites Communications, cilt 1, pp. 1-5, Oct. 2016.
  • K. W. Kim, H. Park, J. G. Lee, J. Kim, Y. U. Kim, J. H. Ryu, J. J. Kim, S. M. Oh, “Capacity Variation Of Carbon-Coated Silicon Monoxide Negative Electrode For Lithium-Ion Batteries”, Electrochim. Acta, cilt 103, pp. 226-230, Jul. 2013.
  • M. Zhou, T. Cai, F. Pu, H. Chen, Z. Wang, H. Zhang, S. Guan, “Graphene/Carbon-Coated Si Nanoparticle Hybrids As High-Performance Anode Materials For Li-Ion Batteries”, ACS Appl. Mater. Interfaces, cilt 5, pp. 3449-3455, Mar., 2013
  • X. Cao , X. Chuan , S. Li , D. Huang ,G. Cao, “Hollow Silica Spheres Embedded In A Porous Carbon Matrix And Its Superior Performance As The Anode For Lithium-Ion Batteries”, Part. Part. Syst. Charact., cilt 33, pp. 110-117. Feb. 2016.
  • Z. Zhang, Y. Wang, W. Ren, Q. Tan, Y. Chen, H. Li, Z. Zhong, F. Su, “Scalable Synthesis Of Interconnected Porous Silicon/Carbon Composites By The Rochow Reaction As High-Performance Anodes of Lithium Ion Batteries”, Angew. Chem., cilt 126, 5265-5269, May 2014.
  • T. Cetinkaya, M. Uysal, H. Akbulut, “Electrochemical Performance Of Electroless Nickel Plated Siliconelectrodes For Li-Ion Batteries”, Appl. Surf. Sci., cilt 334, pp. 94-101, April 2015.
  • T. Cetinkaya, M. Uysal, M. O. Guler, H. Akbulut, A. Alp, “Improvement Cycleability Of Core–Shell Silicon/Copper Composite Electrodes For Li-Ion Batteries By Using Electroless Deposition Of Copper On Silicon Powders”, Powder Technol., cilt 253, pp. 63-69, Feb. 2014.
  • T. Cetinkaya, M.O. Guler, H. Akbulut, “Enhancing Electrochemical Performance Of Silicon Anodes By Dispersing MWCNTs Using Planetary Ball Milling”, Microelectron. Eng., cilt 108, pp.169-176, Aug. 2013.
  • M. Tokur, H. Algul, S. Ozcan, T. Cetinkaya, M. Uysal, H. Akbulut, “Closing To Scaling-Up High Reversible Si/rGO Nanocomposite Anodes For Lithium Ion Batteries”, Electrochim. Acta, cilt 216, pp. 312–319, Oct. 2016
  • L. Xue, K. Fu, Y. Li, G. Xu, Y. Lu, S. Zhang, O. Toprakci, X. Zhang, “Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode”, Nano Energy, cilt 2, pp. 361-367, May 2013
  • J. Li, J. Wang, J. Yang, X. Ma, S. Lu, “Scalable synthesis of a novel structured graphite/silicon/pyrolyzedcarbon composite as anode material for high-performance lithium-ion batteries”, Journal of Alloys and Compounds, cilt 688, pp. 1072-1079, Dec. 2016.
  • J. Wang, H. Y. Lü, C. Y. Fan, F. Wan, J. Z. Guo, Y.Y. Wang, X. L. Wu, “Ultrafine nano-Si material prepared from NaCl-assisted magnesiothermic reduction of scalable silicate: graphene-enhanced Li-storage properties as advanced anode for lithium-ion batteries”, J. Alloy Compd., cilt 694, pp. 208-216, Feb. 2017.
  • W. Ren, Y. Wang, Q. Tan, Z. Zhong, F. Su, “Novel silicon/carbon nano-branches synthesized by reacting silicon with methyl chloride: A high performing anode material in lithium ion battery”, J. Power Sources, cilt 332, pp. 88-95, Nov. 2016.
  • Z. Liu, X. Qin, H. Xu, G. Chen, “One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries”, J. Power Sources, cilt 293, pp. 562 – 269, Oct. 2015.
  • X. Yue, W. Sun, J. Zhang, F. Wang, K. Sun, “Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries”, J. Power Sources, cilt 329, pp. 422 – 427, Oct. 2016.
  • Y. C. Zhang, Y. You, S. Xin, Y. X. Yin, J. Zhang, P. Wang, X. S. Zheng, F. F. Cao, Y. G. Guo, “Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries”, Nano Energy, cilt 25, pp. 120-127, Jul. 2016.
  • J. Wu, X. Qin, H. Zhang, Y. B. He, B. Li, L. Ke, W. Lv, H. Du, Q. H. Yang, F. Kang, “Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode”, Carbon, cilt 84, pp. 434-443, Apr. 2015 .
  • H. Taghinejad, M. Taghinejad, M. Abdolahad, S. Rajabali, A. Rostamian, S. Mohajerzadeh, E. Hosseinian, The conformal silicon deposition on carbon nanotubes as enabled by hydrogenated carbon coatings for synthesis of carbon/silicon core/Shell heterostructure photodiodes, Carbon, vol. 87, 299-308, cilt 2015.
  • R. Wang, G. Zhou, Y. Liu, S. Pan, H. Zhang, D. Yu, Z. Zhang “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects”, Physıcal Rev. B, cilt 61 (24), pp. 16827-16831, Jun. 2000.

Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes

Year 2017, Volume: 21 Issue: 3, 489 - 495, 01.06.2017
https://doi.org/10.16984/saufenbilder.272254

Abstract

Surface of nano silicon powders were coated with amorphous carbon by pyrolysis of polyacronitrile (PAN) polymer.
Microstructural characterization of amorphous carbon coated silicon powders (Si-C) were carried out using scanning
electron microscopy (SEM) and thickness of carbon coating is defined by transmission electron microscopy (TEM).
Elemental analyses of Si-C powders were performed using energy dispersive X-ray spectroscopy (EDS). Structural
and phase characterization of Si-C composite powders were investigated using X-ray diffractometer (XRD) and Raman
spectroscopy. Produced Si-C powders were prepared as an electrode on the copper current collector and
electrochemical tests were carried out using CR2016 button cells at 200 mA/g constant current density. According to
electrochemical test results, carbon coating process enhanced the electrochemical performance by reducing the
problems stem from volume change and showed 770 mAh/g discharge capacity after 30 cycles.


References

  • A. C. Zhang, Y. A. Ruixiang, Z. A. Tengfei, C. C. Zhixin, L. A. Huakun, G. Zaiping, “Mass Production Of Three Dimensional Hierarchical Microfibers Constructed From Silicon-Carbon Core-Shell Architectures With High-Performance Lithium Storage”, Carbon, cilt 72, pp. 169-175, Jun. 2014.
  • W. Junxiong, Q. Xianying, M. Cui, H. Yan-Bing, L. Gemeng, Z. Dong, L. Ming, H. Cuiping, L. Baohua, K. Feiyu, “Honeycomb-Cobweb Inspired Hierarchical Core-Shell Structure Design For Electrospun Silicon/Carbon Fibers As Lithium-Ion Battery Anodes”, Carbon, cilt 98, pp. 582-591, Mar. 2016.
  • Z. Xiang-Yang, T. Jing-Jing, Y. Juan, X. Jing, M. Lu-Lu, “Silicon@Carbon Hollow Core–Shell Heterostructures Novel Anode Materials For Lithium Ion Batteries”, Electrochim. Acta, cilt 87 pp. 663- 668, Jan. 2013.
  • T. Cetinkaya, M. Tokur, S. Ozcan, M. Uysal, H. Akbulut, “Graphene Supported -Mno2 Nanocomposite Cathodes For Lithium Ion Batteries”, Int. J. of Hydrogen Energ., cilt 41, pp. 6945-6953, May. 2016.
  • R. Yi , F. Dai , M. L. Gordin , H. Sohn, D. Wang, “Influence Of Silicon Nanoscale Building Blocks Size And Carbon Coating On The Performance Of Micro-Sized Si-C Composite Li-Ion Anodes”, Adv. Energy Mater., cilt 3, pp. 1507-1515, Jul. 2013.
  • L. Y. Yang, H. Z. Li, J. Liu, Z. Q. Sun, S. S. Tang, M. Lei, “Dual Yolk-Shell Structure Of Carbon and Silica-Coated Silicon For Highperformance Lithium-Ion Batteries”, Nature Scientific Reports, cilt 5, pp. 10908, Jun. 2015.
  • N. Liu, H. Wu, M. T. Mcdowell, Y. Yao, C. Wang, Y. Cui, “A Yolk-Shell Design For Stabilized And Scalable Li Ion Battery Alloy Anodes”, Nano Lett., cilt 12, pp. 3315-3321, May. 2012.
  • Y. Hwa, W. S. Kim, S. H. Hong, H. J. Sohn, “High Capacity And Rate Capability Of Core–Shell Structured Nano Si/C Anode For Li-Ion Batteries”, Electrochim. Acta, cilt 71, pp. 201-205, Jun. 2012.
  • J. Song, S. Chen, M. Zhou, T. Xu, D. Lv, M. L. Gordin, T. Long, M. Melnyk, D. Wang, “Micro-Sized Silicon– Carbon Composites Composed Of Carbon-Coated Sub-10 Nm Si Primary Particles As High-Performance Anode Materials For Lithium-Ion Batteries”, J. Mater. Chem. A, cilt 2, pp. 1257–1262, Jan. 2014.
  • S. Chen, M. L. Gordin, R. Yi, G. Howlett, H. Sohn, D. Wang, “Silicon Core–Hollow Carbon Shell Nanocomposites With Tunable Buffer Voids For High Capacity Anodes Of Lithium-Ion Batteries”, Phys. Chem. Chem. Phys., cilt 14, pp.12741-12745, Jul. 2012 .
  • S. A. Klankowski, R. A. Rojeski, B. A. Cruden, J. Liu, J. Wud, J. Li, “A High-Performance Lithium-Ion Battery Anode Based On The Core–Shell Heterostructure Of Silicon-Coated Vertically Aligned Carbon Nanofibers”, J.Mater. Chem. A, cilt 1, pp. 1055-1064, Apr. 2013.
  • Y. Chen, Y. Hu, J. Shao, Z. Shen, R. Chen, X. Zhang, X. He, Y. Song, X. Xing, “Pyrolytic Carbon-Coated Silicon/Carbon Nanofiber Composite Anodes For High-Performance Lithium-Ion Batteries”, J. Power Sources, cilt 298, pp. 130-137, Dec. 2015.
  • A. Weiqunli, A. Qianwang, B. Kecao, A. Jingjingtang, C. Hongtaowang, A. N. Liminzhou, Y. Haimin, “Mechanics-Based Optimization Of Yolk-Shell Carbon-Coated Silicon Nanoparticle As Electrode Materials For High Capacity Lithium Ion Battery”, Composites Communications, cilt 1, pp. 1-5, Oct. 2016.
  • K. W. Kim, H. Park, J. G. Lee, J. Kim, Y. U. Kim, J. H. Ryu, J. J. Kim, S. M. Oh, “Capacity Variation Of Carbon-Coated Silicon Monoxide Negative Electrode For Lithium-Ion Batteries”, Electrochim. Acta, cilt 103, pp. 226-230, Jul. 2013.
  • M. Zhou, T. Cai, F. Pu, H. Chen, Z. Wang, H. Zhang, S. Guan, “Graphene/Carbon-Coated Si Nanoparticle Hybrids As High-Performance Anode Materials For Li-Ion Batteries”, ACS Appl. Mater. Interfaces, cilt 5, pp. 3449-3455, Mar., 2013
  • X. Cao , X. Chuan , S. Li , D. Huang ,G. Cao, “Hollow Silica Spheres Embedded In A Porous Carbon Matrix And Its Superior Performance As The Anode For Lithium-Ion Batteries”, Part. Part. Syst. Charact., cilt 33, pp. 110-117. Feb. 2016.
  • Z. Zhang, Y. Wang, W. Ren, Q. Tan, Y. Chen, H. Li, Z. Zhong, F. Su, “Scalable Synthesis Of Interconnected Porous Silicon/Carbon Composites By The Rochow Reaction As High-Performance Anodes of Lithium Ion Batteries”, Angew. Chem., cilt 126, 5265-5269, May 2014.
  • T. Cetinkaya, M. Uysal, H. Akbulut, “Electrochemical Performance Of Electroless Nickel Plated Siliconelectrodes For Li-Ion Batteries”, Appl. Surf. Sci., cilt 334, pp. 94-101, April 2015.
  • T. Cetinkaya, M. Uysal, M. O. Guler, H. Akbulut, A. Alp, “Improvement Cycleability Of Core–Shell Silicon/Copper Composite Electrodes For Li-Ion Batteries By Using Electroless Deposition Of Copper On Silicon Powders”, Powder Technol., cilt 253, pp. 63-69, Feb. 2014.
  • T. Cetinkaya, M.O. Guler, H. Akbulut, “Enhancing Electrochemical Performance Of Silicon Anodes By Dispersing MWCNTs Using Planetary Ball Milling”, Microelectron. Eng., cilt 108, pp.169-176, Aug. 2013.
  • M. Tokur, H. Algul, S. Ozcan, T. Cetinkaya, M. Uysal, H. Akbulut, “Closing To Scaling-Up High Reversible Si/rGO Nanocomposite Anodes For Lithium Ion Batteries”, Electrochim. Acta, cilt 216, pp. 312–319, Oct. 2016
  • L. Xue, K. Fu, Y. Li, G. Xu, Y. Lu, S. Zhang, O. Toprakci, X. Zhang, “Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode”, Nano Energy, cilt 2, pp. 361-367, May 2013
  • J. Li, J. Wang, J. Yang, X. Ma, S. Lu, “Scalable synthesis of a novel structured graphite/silicon/pyrolyzedcarbon composite as anode material for high-performance lithium-ion batteries”, Journal of Alloys and Compounds, cilt 688, pp. 1072-1079, Dec. 2016.
  • J. Wang, H. Y. Lü, C. Y. Fan, F. Wan, J. Z. Guo, Y.Y. Wang, X. L. Wu, “Ultrafine nano-Si material prepared from NaCl-assisted magnesiothermic reduction of scalable silicate: graphene-enhanced Li-storage properties as advanced anode for lithium-ion batteries”, J. Alloy Compd., cilt 694, pp. 208-216, Feb. 2017.
  • W. Ren, Y. Wang, Q. Tan, Z. Zhong, F. Su, “Novel silicon/carbon nano-branches synthesized by reacting silicon with methyl chloride: A high performing anode material in lithium ion battery”, J. Power Sources, cilt 332, pp. 88-95, Nov. 2016.
  • Z. Liu, X. Qin, H. Xu, G. Chen, “One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries”, J. Power Sources, cilt 293, pp. 562 – 269, Oct. 2015.
  • X. Yue, W. Sun, J. Zhang, F. Wang, K. Sun, “Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries”, J. Power Sources, cilt 329, pp. 422 – 427, Oct. 2016.
  • Y. C. Zhang, Y. You, S. Xin, Y. X. Yin, J. Zhang, P. Wang, X. S. Zheng, F. F. Cao, Y. G. Guo, “Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries”, Nano Energy, cilt 25, pp. 120-127, Jul. 2016.
  • J. Wu, X. Qin, H. Zhang, Y. B. He, B. Li, L. Ke, W. Lv, H. Du, Q. H. Yang, F. Kang, “Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode”, Carbon, cilt 84, pp. 434-443, Apr. 2015 .
  • H. Taghinejad, M. Taghinejad, M. Abdolahad, S. Rajabali, A. Rostamian, S. Mohajerzadeh, E. Hosseinian, The conformal silicon deposition on carbon nanotubes as enabled by hydrogenated carbon coatings for synthesis of carbon/silicon core/Shell heterostructure photodiodes, Carbon, vol. 87, 299-308, cilt 2015.
  • R. Wang, G. Zhou, Y. Liu, S. Pan, H. Zhang, D. Yu, Z. Zhang “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects”, Physıcal Rev. B, cilt 61 (24), pp. 16827-16831, Jun. 2000.
There are 31 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Tuğrul Çetinkaya

Publication Date June 1, 2017
Submission Date December 5, 2016
Acceptance Date March 21, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Çetinkaya, T. (2017). Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes. Sakarya University Journal of Science, 21(3), 489-495. https://doi.org/10.16984/saufenbilder.272254
AMA Çetinkaya T. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes. SAUJS. June 2017;21(3):489-495. doi:10.16984/saufenbilder.272254
Chicago Çetinkaya, Tuğrul. “Synthesis, Characterization and Electrochemical Performance of core/Shell Structured Carbon Coated Silicon Powders for Lithium Ion Battery Negative Electrodes”. Sakarya University Journal of Science 21, no. 3 (June 2017): 489-95. https://doi.org/10.16984/saufenbilder.272254.
EndNote Çetinkaya T (June 1, 2017) Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes. Sakarya University Journal of Science 21 3 489–495.
IEEE T. Çetinkaya, “Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes”, SAUJS, vol. 21, no. 3, pp. 489–495, 2017, doi: 10.16984/saufenbilder.272254.
ISNAD Çetinkaya, Tuğrul. “Synthesis, Characterization and Electrochemical Performance of core/Shell Structured Carbon Coated Silicon Powders for Lithium Ion Battery Negative Electrodes”. Sakarya University Journal of Science 21/3 (June 2017), 489-495. https://doi.org/10.16984/saufenbilder.272254.
JAMA Çetinkaya T. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes. SAUJS. 2017;21:489–495.
MLA Çetinkaya, Tuğrul. “Synthesis, Characterization and Electrochemical Performance of core/Shell Structured Carbon Coated Silicon Powders for Lithium Ion Battery Negative Electrodes”. Sakarya University Journal of Science, vol. 21, no. 3, 2017, pp. 489-95, doi:10.16984/saufenbilder.272254.
Vancouver Çetinkaya T. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes. SAUJS. 2017;21(3):489-95.