Research Article
BibTex RIS Cite

Rotational Hypersurfaces in S3(r)XR Product Space Bölüm Araştırma Makalesi

Year 2017, Volume: 21 Issue: 3, 350 - 355, 01.06.2017
https://doi.org/10.16984/saufenbilder.284219

Abstract

 Beş boyutlu Öklid uzayı  içindeki  çarpım uzayının
dönel hiperyüzeylerini ele aldık. Hiperyüzeylerin ortalama eğriliği ve Gauss
eğriliğini hesapladık ve bunların bazı sonuçlarını verdik 

References

  • [1] Arslan K., Kılıç Bayram B., Bulca B., Öztürk G. Generalized Rotation Surfaces in Result Math. 61 (2012) 315-327.
  • [2] Bour E. Théorie de la déformation des surfaces. J. de l.Êcole Imperiale Polytechnique 22-39 (1862) 1-148.
  • [3] Cheng Q.M., Wan Q.R. Complete hypersurfaces of with constant mean curvature. Monatsh. Math. 118 (1994) 3-4, 171-204.
  • [4] Do Carmo M., Dajczer M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 34 (1982) 351-367.
  • [5] Ganchev G., Milousheva, V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38 (2014) 883-895.
  • [6] Magid M., Scharlach C., Vrancken L. Affine umbilical surfaces in Manuscripta Math. 88 (1995) 275-289.
  • [7] Moore C. Surfaces of rotation in a space of four dimensions. Ann. Math. 21 (1919) 81-93.
  • [8] Moore C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26 (1920) 454-460.
  • [9] Moruz M., Munteanu M.I. Minimal translation hypersurfaces in J. Math. Anal. Appl. 439 (2016) 798-812.
  • [10] O'Neill, B. Elementary Differential Geometry. Revised second edition. Elsevier/Academic Press, Amsterdam, (2006).
  • [11] Scharlach, C. Affine geometry of surfaces and hypersurfaces in . Symposium on the Differential Geometry of Submanifolds, France (2007) 251-256.
  • [12] Vlachos Th. Hypersurfaces in with harmonic mean curvature vector field. Math. Nachr. 172 (1995) 145-169.

Rotational Hypersurfaces in S3(r)R Product Space

Year 2017, Volume: 21 Issue: 3, 350 - 355, 01.06.2017
https://doi.org/10.16984/saufenbilder.284219

Abstract

We consider rotational hypersurfaces in S3(r)R product space of five dimensional Euclidean space E5. We
calculate the mean curvature and the Gaussian curvature, and give some results
  

References

  • [1] Arslan K., Kılıç Bayram B., Bulca B., Öztürk G. Generalized Rotation Surfaces in Result Math. 61 (2012) 315-327.
  • [2] Bour E. Théorie de la déformation des surfaces. J. de l.Êcole Imperiale Polytechnique 22-39 (1862) 1-148.
  • [3] Cheng Q.M., Wan Q.R. Complete hypersurfaces of with constant mean curvature. Monatsh. Math. 118 (1994) 3-4, 171-204.
  • [4] Do Carmo M., Dajczer M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 34 (1982) 351-367.
  • [5] Ganchev G., Milousheva, V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38 (2014) 883-895.
  • [6] Magid M., Scharlach C., Vrancken L. Affine umbilical surfaces in Manuscripta Math. 88 (1995) 275-289.
  • [7] Moore C. Surfaces of rotation in a space of four dimensions. Ann. Math. 21 (1919) 81-93.
  • [8] Moore C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26 (1920) 454-460.
  • [9] Moruz M., Munteanu M.I. Minimal translation hypersurfaces in J. Math. Anal. Appl. 439 (2016) 798-812.
  • [10] O'Neill, B. Elementary Differential Geometry. Revised second edition. Elsevier/Academic Press, Amsterdam, (2006).
  • [11] Scharlach, C. Affine geometry of surfaces and hypersurfaces in . Symposium on the Differential Geometry of Submanifolds, France (2007) 251-256.
  • [12] Vlachos Th. Hypersurfaces in with harmonic mean curvature vector field. Math. Nachr. 172 (1995) 145-169.
There are 12 citations in total.

Details

Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Erhan Güler This is me

Ömer Kişi This is me

Publication Date June 1, 2017
Submission Date September 5, 2016
Acceptance Date December 14, 2016
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Güler, E., & Kişi, Ö. (2017). Rotational Hypersurfaces in S3(r)R Product Space. Sakarya University Journal of Science, 21(3), 350-355. https://doi.org/10.16984/saufenbilder.284219
AMA Güler E, Kişi Ö. Rotational Hypersurfaces in S3(r)R Product Space. SAUJS. June 2017;21(3):350-355. doi:10.16984/saufenbilder.284219
Chicago Güler, Erhan, and Ömer Kişi. “Rotational Hypersurfaces in S3(r)R Product Space”. Sakarya University Journal of Science 21, no. 3 (June 2017): 350-55. https://doi.org/10.16984/saufenbilder.284219.
EndNote Güler E, Kişi Ö (June 1, 2017) Rotational Hypersurfaces in S3(r)R Product Space. Sakarya University Journal of Science 21 3 350–355.
IEEE E. Güler and Ö. Kişi, “Rotational Hypersurfaces in S3(r)R Product Space”, SAUJS, vol. 21, no. 3, pp. 350–355, 2017, doi: 10.16984/saufenbilder.284219.
ISNAD Güler, Erhan - Kişi, Ömer. “Rotational Hypersurfaces in S3(r)R Product Space”. Sakarya University Journal of Science 21/3 (June 2017), 350-355. https://doi.org/10.16984/saufenbilder.284219.
JAMA Güler E, Kişi Ö. Rotational Hypersurfaces in S3(r)R Product Space. SAUJS. 2017;21:350–355.
MLA Güler, Erhan and Ömer Kişi. “Rotational Hypersurfaces in S3(r)R Product Space”. Sakarya University Journal of Science, vol. 21, no. 3, 2017, pp. 350-5, doi:10.16984/saufenbilder.284219.
Vancouver Güler E, Kişi Ö. Rotational Hypersurfaces in S3(r)R Product Space. SAUJS. 2017;21(3):350-5.