Research Article
BibTex RIS Cite

Pantograf-Katener Sistemler için Bulanık Mantık Tabanlı Belirlenen Pantograf Modeli Kullanılarak Ark Tespiti Yaklaşımı

Year 2017, Volume: 21 Issue: 4, 724 - 739, 01.08.2017
https://doi.org/10.16984/saufenbilder.327098

Abstract

 

Elektrikli trenler, günümüzde yaygın olarak kullanılan, önemli bir ulaşım türüdür. Diğer ulaşım türleri ile karşılaştırıldığında elektrikli trenlerin güç tüketimi ve çevre kirliliğine olan etkisi daha azdır. Ayrıca konfor ve güvenlik gibi birçok avantajı vardır. Elektrikli trenlerde kullanılan en önemli bileşenlerden biri pantograf katener sistemidir. Pantograf katener sistemi, demiryolu hattı boyunca bulunan katener sistemi ve lokomotif üzerinde bulunan pantograf sisteminden oluşmaktadır. Lokomotifin ihtiyaç duyduğu elektrik enerjisi pantograf üst bölgesi ile katener telinin teması sonucunda sağlanmaktadır. Temas sırasında birçok nedenden dolayı arklar oluşmaktadır. Oluşan arklar elektrik enerjisinin sağlıklı aktarılmasını engellemektedir. Lokomotifin sağlıklı bir şekilde çalışabilmesi için elektrik enerjisinin sürekli alınabilmesi gerekmektedir. Bu nedenle pantograf katener sistemi elektrikli trenler için oldukça kritik bileşenlerdir.  Bu çalışmada, pantograf katener sistemi için model ve ark tespiti için yeni bir yöntem önerilmektedir. Görüntü işleme ve bulanık mantık tabanlı bu yöntemde, birçok farklı türde pantograf sisteminin görüntüsü kullanılmıştır. Kullanılan görüntüler üzerinde Canny kenar çıkarımı yapıldıktan sonra Hough dönüşümü ile doğrular elde edilmektedir. Elde edilen doğruların bazı özellikleri bulanık mantığın giriş verileri olarak kullanılmaktadır. Bulanık mantık sonucunda pantograf sisteminin modeli tespit edilmektedir. Tespit edilen pantograf modeli kullanılarak pantograf temas bölgesinde oluşan arklar tespit edilmektedir.


References

  • [1] H. Kim, "Pantograph Detection System using Image Processing Techniques,1", 2015.
  • [2] E. Karakose, M. T. Gencoglu, M. Karakose, O. Yaman, I. Aydin, E. Akin, “A new arc detection method based on fuzzy logic using S-transform for pantograph–catenary systems,” Journal of Intell. Manufacturing, 2015, pp. 1-18.
  • [3] I. Aydin, E. Karakose, M. Karakose, M.T. Gencoglu, E. Akin, “A new computer vision approach for active pantograph control”, Innovations in Intelligent Systems and Applications, 2013, pp. 1-5.
  • [4] I. Aydin, M. Karakose, E. Akin, “A Robust Anomaly Detection in Pantograph-Catenary System Based on Mean-Shift Tracking and Foreground Detection,” 2013 IEEE Int. Conf. Syst. Man, Cybern., Oct, 2013. pp. 4444–4449.
  • [5] S. Midya, R. Thottappillil, “An overview of electromagnetic compatibility challenges in European Rail Traffic Management System,” Transp. Res. Part C Emerg. Technol., vol. 16, no. 5, Oct. 2008, pp. 515–534,
  • [6] A. Mariscotti, A. Marrese, N. Pasquino, R.S.L. Moriello “Time and frequency characterization of radiated disturbance in telecommunication bands due to pantograph arcing,” Measurement, vol. 46, no. 10, Dec. 2013, pp. 4342–4352.
  • [7] F. Romano, M. Tucci, M. Raugi, S. Barmada, “Arc detection in pantograph-catenary systems by the use of support vector machines-based classification,” IET Electr. Syst. Transp., Nov. 2013, pp. 1–8.
  • [8] O. Bruno, A. Landi, M. Papi, L. Sani “Phototube sensor for monitoring the quality of current collection on overhead electrified railways,” Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 2001, pp. 231-241.
  • [9] G. Bucca, A. Collina, “A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system,” Wear, vol. 266, no. 1–2, Jan. 2009, pp. 46–59.
  • [10] C. Ocoleanu, I. Popa, G. Manolea, A. Dolan, “Temperature investigation in contact pantograph - AC contact line,” vol. 3, no. 3, 2009, pp. 154–163.
  • [11] S. Östlund, A. Gustafsson, L. Buhrkall, M. Skoglund, “Condition monitoring of pantograph contact strip,” IET International Conference on Railway Condition Monitoring, 2008, pp. 1-6.
  • [12] A. Matvejevs, A. Matvejevs, “Pantograph-Catenary System Modeling Using MATLAB-Simulink Algorithms,” Publication in a Scientific Journal of the Series of Scientific Journal of RTU, vol. 44, 2010, pp. 38–44.
  • [13] Y. Liu, G. W. Chang, H. M. Huang, “Mayr's Equation-Based Model for Pantograph Arc of High-Speed Railway Traction System,” IEEE Transactions on Power Delivery, vol. 25, no. 3, 2010, pp. 2025–2027.
  • [14] L. G. C. Hamey, T. Watkins, S. W. T. Yen, “Pancam: In-Service Inspection of Locomotive Pantographs,” 9th Bienn. Conf. Aust. Pattern Recognit. Soc. on Digit. Image Comput. Tech. and Appl., Dec. 2007, pp. 493–499.
  • [15] M. Li, W. Ze-yong, G. Xiao-rong, W. Li, Y. Kai, “Edge Detection on Pantograph Slide Image,” 2nd Int. Congr. Image Signal Process., Oct. 2009, pp. 1–3.
  • [16] A. A. Boguslavskii, S. M. Sokolov, “Detecting objects in images in real-time computer vision systems using structured geometric models,” Program. Comput. Softw., vol. 32, no. 3, May 2006, pp. 177–187.
  • [17] M. Sacchi, S. Cagnoni, D. Spagnolettix, L. Ascariz, G. Zunino, A. Piazzi, “PAVISYS A computer vision system for the inspection of locomotive pantographs,” Pantograph Catenary Interaction Framework for Intelligent Control, 2011.
  • [18] A. Haghi, U. U. Sheikh, M. N. Marsono, “A Hardware/Software Co-design Architecture of Canny Edge Detection,” 2012 Fourth Int. Conf. Comput. Intell. Model. Simul., vol. 2, no. 2, Sep. 2012, pp. 214–219.
  • [19] X. Zhu, X. Gao, Z. Wang, L. Wang, and K. Yang, “Study on the Edge Detection and Extraction Algorithm in the Pantographslipper’s Abrasion,” 2010 Int. Conf. Comput. Inf. Sci., Dec. 2010, pp. 474–477.
  • [20] O. Yaman, M. Karakose, I. Aydin, E. Akin, “Image processing and model based arc detection in pantograph catenary systems”, IEEE 22nd In Signal Processing and Communications Applications Conference (SIU), 2014, pp. 1934-1937.
  • [21] A. Landi, L. Menconi, L. Sani, “Hough transform and thermo-vision for monitoring pantograph-catenary system,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 220, no. 4, Jan. 2006, pp. 435–447.
  • [22] D. Rujiao, Z. Wei, H. Songling, C. Jianye, “Automatic inspection of the localizer slope based on improved Hough transform,” IEEE Int. Instrum. Meas. Technol. Conf., May 2011, pp. 1–4.
  • [23] S. Walters, “Simulation of Fuzzy Control Applied to a Railway Pantograph-Catenary System 2 A Model of a PAC System,” Knowledge-Based and Intelligent Information and Engineering Systems, vol.6277, 2010, pp. 322–330.
  • [24] O. Yaman, M. Karakose, I. Aydin, E. Akin, “Detection of pantograph geometric model based on fuzzy logic and image processing”, IEEE 22nd In Signal Processing and Communications Applications Conference (SIU), 2014, pp. 686-689.
  • [25] E. Karakose, M.T. Gencoglu, “Adaptive fuzzy control approach for dynamic pantograph-catenary interaction,” IEEE International Symposium on Mechatronika, 2012, pp. 1-5,
  • [26] I. Aydin. "A new approach based on firefly algorithm for vision-based railway overhead inspection system." Measurement 74, 2015, pp. 43-55.
  • [27] Q. Chen, L. Zhao, J. Lu, G. Kuang, N. Wang, Y. Jiang, “Modified two-dimensional otsu image segmentation algorithm and fast realisation,” IET Image Processing, vol. 6, Issuse. 4, 2012, pp. 426-433.
  • [28] D.H. AlSaeed, A. Bouridane, A. Elzaart, R. Sammouda, “Two modified Otsu image segmentation methods based on Lognormal and Gamma distribution models,” International Conference on Information Technology and e-Services, 2012, pp. 1-5.
Year 2017, Volume: 21 Issue: 4, 724 - 739, 01.08.2017
https://doi.org/10.16984/saufenbilder.327098

Abstract

References

  • [1] H. Kim, "Pantograph Detection System using Image Processing Techniques,1", 2015.
  • [2] E. Karakose, M. T. Gencoglu, M. Karakose, O. Yaman, I. Aydin, E. Akin, “A new arc detection method based on fuzzy logic using S-transform for pantograph–catenary systems,” Journal of Intell. Manufacturing, 2015, pp. 1-18.
  • [3] I. Aydin, E. Karakose, M. Karakose, M.T. Gencoglu, E. Akin, “A new computer vision approach for active pantograph control”, Innovations in Intelligent Systems and Applications, 2013, pp. 1-5.
  • [4] I. Aydin, M. Karakose, E. Akin, “A Robust Anomaly Detection in Pantograph-Catenary System Based on Mean-Shift Tracking and Foreground Detection,” 2013 IEEE Int. Conf. Syst. Man, Cybern., Oct, 2013. pp. 4444–4449.
  • [5] S. Midya, R. Thottappillil, “An overview of electromagnetic compatibility challenges in European Rail Traffic Management System,” Transp. Res. Part C Emerg. Technol., vol. 16, no. 5, Oct. 2008, pp. 515–534,
  • [6] A. Mariscotti, A. Marrese, N. Pasquino, R.S.L. Moriello “Time and frequency characterization of radiated disturbance in telecommunication bands due to pantograph arcing,” Measurement, vol. 46, no. 10, Dec. 2013, pp. 4342–4352.
  • [7] F. Romano, M. Tucci, M. Raugi, S. Barmada, “Arc detection in pantograph-catenary systems by the use of support vector machines-based classification,” IET Electr. Syst. Transp., Nov. 2013, pp. 1–8.
  • [8] O. Bruno, A. Landi, M. Papi, L. Sani “Phototube sensor for monitoring the quality of current collection on overhead electrified railways,” Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 2001, pp. 231-241.
  • [9] G. Bucca, A. Collina, “A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system,” Wear, vol. 266, no. 1–2, Jan. 2009, pp. 46–59.
  • [10] C. Ocoleanu, I. Popa, G. Manolea, A. Dolan, “Temperature investigation in contact pantograph - AC contact line,” vol. 3, no. 3, 2009, pp. 154–163.
  • [11] S. Östlund, A. Gustafsson, L. Buhrkall, M. Skoglund, “Condition monitoring of pantograph contact strip,” IET International Conference on Railway Condition Monitoring, 2008, pp. 1-6.
  • [12] A. Matvejevs, A. Matvejevs, “Pantograph-Catenary System Modeling Using MATLAB-Simulink Algorithms,” Publication in a Scientific Journal of the Series of Scientific Journal of RTU, vol. 44, 2010, pp. 38–44.
  • [13] Y. Liu, G. W. Chang, H. M. Huang, “Mayr's Equation-Based Model for Pantograph Arc of High-Speed Railway Traction System,” IEEE Transactions on Power Delivery, vol. 25, no. 3, 2010, pp. 2025–2027.
  • [14] L. G. C. Hamey, T. Watkins, S. W. T. Yen, “Pancam: In-Service Inspection of Locomotive Pantographs,” 9th Bienn. Conf. Aust. Pattern Recognit. Soc. on Digit. Image Comput. Tech. and Appl., Dec. 2007, pp. 493–499.
  • [15] M. Li, W. Ze-yong, G. Xiao-rong, W. Li, Y. Kai, “Edge Detection on Pantograph Slide Image,” 2nd Int. Congr. Image Signal Process., Oct. 2009, pp. 1–3.
  • [16] A. A. Boguslavskii, S. M. Sokolov, “Detecting objects in images in real-time computer vision systems using structured geometric models,” Program. Comput. Softw., vol. 32, no. 3, May 2006, pp. 177–187.
  • [17] M. Sacchi, S. Cagnoni, D. Spagnolettix, L. Ascariz, G. Zunino, A. Piazzi, “PAVISYS A computer vision system for the inspection of locomotive pantographs,” Pantograph Catenary Interaction Framework for Intelligent Control, 2011.
  • [18] A. Haghi, U. U. Sheikh, M. N. Marsono, “A Hardware/Software Co-design Architecture of Canny Edge Detection,” 2012 Fourth Int. Conf. Comput. Intell. Model. Simul., vol. 2, no. 2, Sep. 2012, pp. 214–219.
  • [19] X. Zhu, X. Gao, Z. Wang, L. Wang, and K. Yang, “Study on the Edge Detection and Extraction Algorithm in the Pantographslipper’s Abrasion,” 2010 Int. Conf. Comput. Inf. Sci., Dec. 2010, pp. 474–477.
  • [20] O. Yaman, M. Karakose, I. Aydin, E. Akin, “Image processing and model based arc detection in pantograph catenary systems”, IEEE 22nd In Signal Processing and Communications Applications Conference (SIU), 2014, pp. 1934-1937.
  • [21] A. Landi, L. Menconi, L. Sani, “Hough transform and thermo-vision for monitoring pantograph-catenary system,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 220, no. 4, Jan. 2006, pp. 435–447.
  • [22] D. Rujiao, Z. Wei, H. Songling, C. Jianye, “Automatic inspection of the localizer slope based on improved Hough transform,” IEEE Int. Instrum. Meas. Technol. Conf., May 2011, pp. 1–4.
  • [23] S. Walters, “Simulation of Fuzzy Control Applied to a Railway Pantograph-Catenary System 2 A Model of a PAC System,” Knowledge-Based and Intelligent Information and Engineering Systems, vol.6277, 2010, pp. 322–330.
  • [24] O. Yaman, M. Karakose, I. Aydin, E. Akin, “Detection of pantograph geometric model based on fuzzy logic and image processing”, IEEE 22nd In Signal Processing and Communications Applications Conference (SIU), 2014, pp. 686-689.
  • [25] E. Karakose, M.T. Gencoglu, “Adaptive fuzzy control approach for dynamic pantograph-catenary interaction,” IEEE International Symposium on Mechatronika, 2012, pp. 1-5,
  • [26] I. Aydin. "A new approach based on firefly algorithm for vision-based railway overhead inspection system." Measurement 74, 2015, pp. 43-55.
  • [27] Q. Chen, L. Zhao, J. Lu, G. Kuang, N. Wang, Y. Jiang, “Modified two-dimensional otsu image segmentation algorithm and fast realisation,” IET Image Processing, vol. 6, Issuse. 4, 2012, pp. 426-433.
  • [28] D.H. AlSaeed, A. Bouridane, A. Elzaart, R. Sammouda, “Two modified Otsu image segmentation methods based on Lognormal and Gamma distribution models,” International Conference on Information Technology and e-Services, 2012, pp. 1-5.
There are 28 citations in total.

Details

Subjects Electrical Engineering
Journal Section Research Articles
Authors

Orhan Yaman

Ebru Karaköse This is me

İlhan Aydın

Mehmet Karaköse

Erhan Akın

Publication Date August 1, 2017
Submission Date July 7, 2017
Acceptance Date July 6, 2017
Published in Issue Year 2017 Volume: 21 Issue: 4

Cite

APA Yaman, O., Karaköse, E., Aydın, İ., Karaköse, M., et al. (2017). Pantograf-Katener Sistemler için Bulanık Mantık Tabanlı Belirlenen Pantograf Modeli Kullanılarak Ark Tespiti Yaklaşımı. Sakarya University Journal of Science, 21(4), 724-739. https://doi.org/10.16984/saufenbilder.327098
AMA Yaman O, Karaköse E, Aydın İ, Karaköse M, Akın E. Pantograf-Katener Sistemler için Bulanık Mantık Tabanlı Belirlenen Pantograf Modeli Kullanılarak Ark Tespiti Yaklaşımı. SAUJS. August 2017;21(4):724-739. doi:10.16984/saufenbilder.327098
Chicago Yaman, Orhan, Ebru Karaköse, İlhan Aydın, Mehmet Karaköse, and Erhan Akın. “Pantograf-Katener Sistemler için Bulanık Mantık Tabanlı Belirlenen Pantograf Modeli Kullanılarak Ark Tespiti Yaklaşımı”. Sakarya University Journal of Science 21, no. 4 (August 2017): 724-39. https://doi.org/10.16984/saufenbilder.327098.
EndNote Yaman O, Karaköse E, Aydın İ, Karaköse M, Akın E (August 1, 2017) Pantograf-Katener Sistemler için Bulanık Mantık Tabanlı Belirlenen Pantograf Modeli Kullanılarak Ark Tespiti Yaklaşımı. Sakarya University Journal of Science 21 4 724–739.
IEEE O. Yaman, E. Karaköse, İ. Aydın, M. Karaköse, and E. Akın, “Pantograf-Katener Sistemler için Bulanık Mantık Tabanlı Belirlenen Pantograf Modeli Kullanılarak Ark Tespiti Yaklaşımı”, SAUJS, vol. 21, no. 4, pp. 724–739, 2017, doi: 10.16984/saufenbilder.327098.
ISNAD Yaman, Orhan et al. “Pantograf-Katener Sistemler için Bulanık Mantık Tabanlı Belirlenen Pantograf Modeli Kullanılarak Ark Tespiti Yaklaşımı”. Sakarya University Journal of Science 21/4 (August 2017), 724-739. https://doi.org/10.16984/saufenbilder.327098.
JAMA Yaman O, Karaköse E, Aydın İ, Karaköse M, Akın E. Pantograf-Katener Sistemler için Bulanık Mantık Tabanlı Belirlenen Pantograf Modeli Kullanılarak Ark Tespiti Yaklaşımı. SAUJS. 2017;21:724–739.
MLA Yaman, Orhan et al. “Pantograf-Katener Sistemler için Bulanık Mantık Tabanlı Belirlenen Pantograf Modeli Kullanılarak Ark Tespiti Yaklaşımı”. Sakarya University Journal of Science, vol. 21, no. 4, 2017, pp. 724-39, doi:10.16984/saufenbilder.327098.
Vancouver Yaman O, Karaköse E, Aydın İ, Karaköse M, Akın E. Pantograf-Katener Sistemler için Bulanık Mantık Tabanlı Belirlenen Pantograf Modeli Kullanılarak Ark Tespiti Yaklaşımı. SAUJS. 2017;21(4):724-39.

Cited By

Sakarya University Journal of Science (SAUJS)