Research Article
BibTex RIS Cite

Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator

Year 2018, Volume: 22 Issue: 6, 1878 - 1885, 01.12.2018
https://doi.org/10.16984/saufenbilder.422168

Abstract

 

The use
of biased estimation techniques is inevitable in connection with
multicollinearity. Two stage ridge estimator is a pioneer biased estimator
which is use to recover the problems that are originated from the
multicollinearity. The noteworthy issue regarding two stage ridge estimator is
selection of its biasing parameter. This article investigates several methods
on selection of the biasing parameter of the two stage ridge estimator based on
the works in the literature related to ridge estimator in a linear regression
model. To demonstrate the best estimators of the biasing parameter, a Monte
Carlo experiment is conducted. The utility of the proposed estimators of the
biasing parameter for two stage ridge estimator is observed in terms of mean
square error criterion.



References

  • [1] A. E. Hoerl and R. W. Kennard, “Ridge regression: biased estimation for non-orthogonal problems”, Technometrics, vol. 12, no. 1, pp. 55-67, 1970.
  • [2] H. D. Vinod and A. Ullah, “Recent advances in regression methods”, Marcel Dekker, New York, Inc., 1981.
  • [3] A. E. Hoerl, R. W. Kennard and K. F. Baldwin, “Ridge regression: some simulations”, Communications in Statistics-Simulation and Computation, vol. 4, pp. 105–123, 1975.
  • [4] J. F. Lawless and P. A. Wang, “Simulation study of ridge and other regression estimators”, Communications in Statistics-Theory and Methods , vol. 5, no. 4, pp. 307-323, 1976.
  • [5] R. R. Hocking, F. M. Speed and M. J. Lynn, “A class of biased estimators in linear regression”, Technometrics, vol. 18, no. 4, pp. 425-437, 1976.
  • [6] B. M. G. Kibria, “Performance of some new ridge regression estimators”, Communications in Statistics-Simulation and Computation, vol. 32, no. pp. 419–435, 2003.
  • [7] G. Khalaf and G. Shukur, “Choosing ridge parameters for regression problems”, Communications in Statistics-Theory and Methods, vol. 34, pp. 1177-1182, 2005.
  • [8] M. Alkhamisi, G. Khalaf and G. Shukur, “Some modifications for choosing ridge parameters”, Communications in Statistics-Theory and Methods, vol. 35, pp. 2005-2020, 2006.
  • [9] M. Alkhamisi and G. Shukur, “Developing ridge parameters for SUR model”, Communications in Statistics-Theory and Methods, vol. 37, no. 4, pp. 544-564, 2008.
  • [10] G. Muniz and B. M. G. Kibria, “On some ridge regression estimators: an empirical comparisons”, Communications in Statistics-Simulation and Computation, vol. 38, pp. 621-630, 2009.
  • [11] G. Muniz, B. M. G. Kibria, G. Shukur and K. Mansson, “On developing ridge regression parameters: a graphical investigation”, SORT, vol. 36, no. 2, pp. 115-138, 2012.
  • [12] K. Mansson, G. Shukur and B. M. G Kibria, “A simulation study of some ridge regression estimators under different distributional assumptions”, Communications in Statistics-Simulation and Computation, vol. 39, no. 8, pp. 1639-1670, 2010.
  • [13] H. M. Wagnar, “A monte carlo study of estimates of simultaneous linear structural equations”, Econometrica, vol. 26, pp. 117-133, 1958.
  • [14] D. F. Hendry, “The structure of simultaneous equation estimators”, Journal of Econometrics, vol. 4, pp. 51-88, 1976.
  • [15] S. B. Park, “Some sampling properties of minimum expected loss (MELO) estimates of structural coefficients”, Journal of Econometrics, vol. 18, pp. 295–311, 1982.
  • [16] O. Capps Jr and W. D. Grubbs, “A monte carlo study of collinearity in linear simultaneous equation models”, Journal of Statistical Computation and Simulation, vol. 39, pp. 139-162, 1991.
  • [17] J. Johnston and J. E. Dinardo, “Econometric methods”, McGraw-Hill, New York, 1997.
  • [18] J. Geweke, “Using simulation methods for bayesian econometric models: inference, development and communication”, Econometric Reviews, vol. 18, no. 1, pp. 1-73, 1999.
  • [19] D. A. Agunbiade, “A monte carlo approach to the estimation of a just identified simultaneous three-equations model with three multicollinear exogenous variables”, Unpublished Ph.D. Thesis, University of Ibadan, 2007.
  • [20] D. A. Agunbiade, “Effect of multicollinearity and the sensitivity of the estimation methods in simultaneous equation model”, Journal of Modern Mathematics and Statistics, vol. 5, no. 1, pp. 9-12, 2011.
  • [21] D. A. Agunbiade and J. O. Iyaniwura, “Estimation under multicollinearity: a comparative approach using monte carlo methods”, Journal of Mathematics and Statistics, vol. 6 no. 2, pp. 183-192, 2010.
Year 2018, Volume: 22 Issue: 6, 1878 - 1885, 01.12.2018
https://doi.org/10.16984/saufenbilder.422168

Abstract

References

  • [1] A. E. Hoerl and R. W. Kennard, “Ridge regression: biased estimation for non-orthogonal problems”, Technometrics, vol. 12, no. 1, pp. 55-67, 1970.
  • [2] H. D. Vinod and A. Ullah, “Recent advances in regression methods”, Marcel Dekker, New York, Inc., 1981.
  • [3] A. E. Hoerl, R. W. Kennard and K. F. Baldwin, “Ridge regression: some simulations”, Communications in Statistics-Simulation and Computation, vol. 4, pp. 105–123, 1975.
  • [4] J. F. Lawless and P. A. Wang, “Simulation study of ridge and other regression estimators”, Communications in Statistics-Theory and Methods , vol. 5, no. 4, pp. 307-323, 1976.
  • [5] R. R. Hocking, F. M. Speed and M. J. Lynn, “A class of biased estimators in linear regression”, Technometrics, vol. 18, no. 4, pp. 425-437, 1976.
  • [6] B. M. G. Kibria, “Performance of some new ridge regression estimators”, Communications in Statistics-Simulation and Computation, vol. 32, no. pp. 419–435, 2003.
  • [7] G. Khalaf and G. Shukur, “Choosing ridge parameters for regression problems”, Communications in Statistics-Theory and Methods, vol. 34, pp. 1177-1182, 2005.
  • [8] M. Alkhamisi, G. Khalaf and G. Shukur, “Some modifications for choosing ridge parameters”, Communications in Statistics-Theory and Methods, vol. 35, pp. 2005-2020, 2006.
  • [9] M. Alkhamisi and G. Shukur, “Developing ridge parameters for SUR model”, Communications in Statistics-Theory and Methods, vol. 37, no. 4, pp. 544-564, 2008.
  • [10] G. Muniz and B. M. G. Kibria, “On some ridge regression estimators: an empirical comparisons”, Communications in Statistics-Simulation and Computation, vol. 38, pp. 621-630, 2009.
  • [11] G. Muniz, B. M. G. Kibria, G. Shukur and K. Mansson, “On developing ridge regression parameters: a graphical investigation”, SORT, vol. 36, no. 2, pp. 115-138, 2012.
  • [12] K. Mansson, G. Shukur and B. M. G Kibria, “A simulation study of some ridge regression estimators under different distributional assumptions”, Communications in Statistics-Simulation and Computation, vol. 39, no. 8, pp. 1639-1670, 2010.
  • [13] H. M. Wagnar, “A monte carlo study of estimates of simultaneous linear structural equations”, Econometrica, vol. 26, pp. 117-133, 1958.
  • [14] D. F. Hendry, “The structure of simultaneous equation estimators”, Journal of Econometrics, vol. 4, pp. 51-88, 1976.
  • [15] S. B. Park, “Some sampling properties of minimum expected loss (MELO) estimates of structural coefficients”, Journal of Econometrics, vol. 18, pp. 295–311, 1982.
  • [16] O. Capps Jr and W. D. Grubbs, “A monte carlo study of collinearity in linear simultaneous equation models”, Journal of Statistical Computation and Simulation, vol. 39, pp. 139-162, 1991.
  • [17] J. Johnston and J. E. Dinardo, “Econometric methods”, McGraw-Hill, New York, 1997.
  • [18] J. Geweke, “Using simulation methods for bayesian econometric models: inference, development and communication”, Econometric Reviews, vol. 18, no. 1, pp. 1-73, 1999.
  • [19] D. A. Agunbiade, “A monte carlo approach to the estimation of a just identified simultaneous three-equations model with three multicollinear exogenous variables”, Unpublished Ph.D. Thesis, University of Ibadan, 2007.
  • [20] D. A. Agunbiade, “Effect of multicollinearity and the sensitivity of the estimation methods in simultaneous equation model”, Journal of Modern Mathematics and Statistics, vol. 5, no. 1, pp. 9-12, 2011.
  • [21] D. A. Agunbiade and J. O. Iyaniwura, “Estimation under multicollinearity: a comparative approach using monte carlo methods”, Journal of Mathematics and Statistics, vol. 6 no. 2, pp. 183-192, 2010.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Nimet Özbay

Selma Toker

Publication Date December 1, 2018
Submission Date May 9, 2018
Acceptance Date October 1, 2018
Published in Issue Year 2018 Volume: 22 Issue: 6

Cite

APA Özbay, N., & Toker, S. (2018). Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator. Sakarya University Journal of Science, 22(6), 1878-1885. https://doi.org/10.16984/saufenbilder.422168
AMA Özbay N, Toker S. Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator. SAUJS. December 2018;22(6):1878-1885. doi:10.16984/saufenbilder.422168
Chicago Özbay, Nimet, and Selma Toker. “Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator”. Sakarya University Journal of Science 22, no. 6 (December 2018): 1878-85. https://doi.org/10.16984/saufenbilder.422168.
EndNote Özbay N, Toker S (December 1, 2018) Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator. Sakarya University Journal of Science 22 6 1878–1885.
IEEE N. Özbay and S. Toker, “Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator”, SAUJS, vol. 22, no. 6, pp. 1878–1885, 2018, doi: 10.16984/saufenbilder.422168.
ISNAD Özbay, Nimet - Toker, Selma. “Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator”. Sakarya University Journal of Science 22/6 (December 2018), 1878-1885. https://doi.org/10.16984/saufenbilder.422168.
JAMA Özbay N, Toker S. Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator. SAUJS. 2018;22:1878–1885.
MLA Özbay, Nimet and Selma Toker. “Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator”. Sakarya University Journal of Science, vol. 22, no. 6, 2018, pp. 1878-85, doi:10.16984/saufenbilder.422168.
Vancouver Özbay N, Toker S. Determining the Effect of Some Biasing Parameter Selection Methods for the Two Stage Ridge Regression Estimator. SAUJS. 2018;22(6):1878-85.