Research Article
BibTex RIS Cite

Dual Zariski Topology on Comultiplication Modules

Year 2019, Volume: 23 Issue: 3, 390 - 395, 01.06.2019
https://doi.org/10.16984/saufenbilder.459289

Abstract

This paper deals
with dual Zariski topology on comultiplication modules. We define a subspace
topology of dual Zariski topology on comultiplication modules and study some
properties of this subspace topology. We prove that XsN 
is an Artinian topological space if and only if M satisfies
the SN-condition.

References

  • R. Ameri, “Some properties of Zariski topology of multiplication modules”, Houston Journal of Mathematics, vol. 36, pp. 337-344, 2010.
  • H. Ansari-Toroghy and F. Farshadifar, “On the Dual Notion of Prime Submodules,” Algebra Colloquium, vol. 19, no. 1, pp. 1109–1116, 2012.
  • H. Ansari-Toroghy and F. Farshadifar, “The Zariski Topology on the Second Spectrum of a Module,” Algebra Colloquium, vol. 21, no. 4, pp. 671–688, 2014.
  • N. Bourbaki, “Elements of Mathematics General Topology Part 1 and Part 2,” Hermann and Addison-Wesley, Paris, 1966.
  • S. Çeken and M. Alkan, “On the second Spectrum and the Second Classical Zariski topology of a Module,” Journal of Algebra and Its Applications, vol. 14, no. 8, pp. 1550150(1)–1550150(13), 2015.
  • S. Çeken and M. Alkan, “Dual of Zariski topology for modules,” Book Series: AIP Conf. Proc., vol. 1389, no. 1, pp. 357–360, 2013.
  • Z. El-Bast and P. F. Smith, “Multiplications Modules,” Comm. in Algebra, vol. 16, pp. 755-779, 1998.
  • C. P. Lu, “The Zariski topology on the prime spectrum of a module,” Houston Journal of Mathematics, vol. 25, no. 3, pp. 417-432, 1999.
  • R. Y. Sharp, “Steps in commutative algebra,” Cambridge University Press, Cambridge, 2001.
  • O. Öneş and M. Alkan, “The structure of some topologies on modules,” AIP Conference Proceedings, vol. 1863, no. 1, pp. 300010(1)- 300010(4), 2017.
  • O. Öneş and M. Alkan, “Zariski Subspace Topologies On Ideals,” Hacettepe Journal of Mathematics and Statistics, accepted, Doi: 10.15672/HJMS.2018.597, 2018.
  • O. Öneş and M. Alkan, “The relationships between graded ideals and subspaces,” AIP Conference Proceedings, vol. 1991, no. 1, pp. 020027(1)- 020027(4), 2018.
  • S. Yassemi, “The dual notion of prime submodules,” Arch. Math. (Brno), vol. 37, pp. 273–278, 2001.
Year 2019, Volume: 23 Issue: 3, 390 - 395, 01.06.2019
https://doi.org/10.16984/saufenbilder.459289

Abstract

References

  • R. Ameri, “Some properties of Zariski topology of multiplication modules”, Houston Journal of Mathematics, vol. 36, pp. 337-344, 2010.
  • H. Ansari-Toroghy and F. Farshadifar, “On the Dual Notion of Prime Submodules,” Algebra Colloquium, vol. 19, no. 1, pp. 1109–1116, 2012.
  • H. Ansari-Toroghy and F. Farshadifar, “The Zariski Topology on the Second Spectrum of a Module,” Algebra Colloquium, vol. 21, no. 4, pp. 671–688, 2014.
  • N. Bourbaki, “Elements of Mathematics General Topology Part 1 and Part 2,” Hermann and Addison-Wesley, Paris, 1966.
  • S. Çeken and M. Alkan, “On the second Spectrum and the Second Classical Zariski topology of a Module,” Journal of Algebra and Its Applications, vol. 14, no. 8, pp. 1550150(1)–1550150(13), 2015.
  • S. Çeken and M. Alkan, “Dual of Zariski topology for modules,” Book Series: AIP Conf. Proc., vol. 1389, no. 1, pp. 357–360, 2013.
  • Z. El-Bast and P. F. Smith, “Multiplications Modules,” Comm. in Algebra, vol. 16, pp. 755-779, 1998.
  • C. P. Lu, “The Zariski topology on the prime spectrum of a module,” Houston Journal of Mathematics, vol. 25, no. 3, pp. 417-432, 1999.
  • R. Y. Sharp, “Steps in commutative algebra,” Cambridge University Press, Cambridge, 2001.
  • O. Öneş and M. Alkan, “The structure of some topologies on modules,” AIP Conference Proceedings, vol. 1863, no. 1, pp. 300010(1)- 300010(4), 2017.
  • O. Öneş and M. Alkan, “Zariski Subspace Topologies On Ideals,” Hacettepe Journal of Mathematics and Statistics, accepted, Doi: 10.15672/HJMS.2018.597, 2018.
  • O. Öneş and M. Alkan, “The relationships between graded ideals and subspaces,” AIP Conference Proceedings, vol. 1991, no. 1, pp. 020027(1)- 020027(4), 2018.
  • S. Yassemi, “The dual notion of prime submodules,” Arch. Math. (Brno), vol. 37, pp. 273–278, 2001.
There are 13 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ortaç Öneş 0000-0001-6777-9192

Publication Date June 1, 2019
Submission Date September 12, 2018
Acceptance Date December 20, 2018
Published in Issue Year 2019 Volume: 23 Issue: 3

Cite

APA Öneş, O. (2019). Dual Zariski Topology on Comultiplication Modules. Sakarya University Journal of Science, 23(3), 390-395. https://doi.org/10.16984/saufenbilder.459289
AMA Öneş O. Dual Zariski Topology on Comultiplication Modules. SAUJS. June 2019;23(3):390-395. doi:10.16984/saufenbilder.459289
Chicago Öneş, Ortaç. “Dual Zariski Topology on Comultiplication Modules”. Sakarya University Journal of Science 23, no. 3 (June 2019): 390-95. https://doi.org/10.16984/saufenbilder.459289.
EndNote Öneş O (June 1, 2019) Dual Zariski Topology on Comultiplication Modules. Sakarya University Journal of Science 23 3 390–395.
IEEE O. Öneş, “Dual Zariski Topology on Comultiplication Modules”, SAUJS, vol. 23, no. 3, pp. 390–395, 2019, doi: 10.16984/saufenbilder.459289.
ISNAD Öneş, Ortaç. “Dual Zariski Topology on Comultiplication Modules”. Sakarya University Journal of Science 23/3 (June 2019), 390-395. https://doi.org/10.16984/saufenbilder.459289.
JAMA Öneş O. Dual Zariski Topology on Comultiplication Modules. SAUJS. 2019;23:390–395.
MLA Öneş, Ortaç. “Dual Zariski Topology on Comultiplication Modules”. Sakarya University Journal of Science, vol. 23, no. 3, 2019, pp. 390-5, doi:10.16984/saufenbilder.459289.
Vancouver Öneş O. Dual Zariski Topology on Comultiplication Modules. SAUJS. 2019;23(3):390-5.