Research Article
BibTex RIS Cite
Year 2019, Volume: 23 Issue: 3, 396 - 402, 01.06.2019
https://doi.org/10.16984/saufenbilder.483138

Abstract

References

  • [1] S. Akbari, H.A. Tavallae and S. Khalashi Gheze-lahmad, “Intersection graphs of submodules of a modules,” J. Algebra and Its Aplications, vol. 11, no. 1, 2012, 1250019.[2] F.W. Anderson and K.R. Fuller, Rings and Cat-egories of Modules, Springer, New York, 1992.[3] J.A. Bandy and U.S.R. Murty, Graph Theory, Springer, New York, 2008.[4] I. Beck, “Coloring of a commutative ring,” J. Algebra, vol. 116, pp. 208-226, 1998.[5] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, “Intersection graphs of ideals of rings,” Discrete Math., vol. 309, pp. 5381-5392, 2009. [6] Loft Ali Mahdavi and Yahya Talebi, “Co-intersection graph of submodules of a mod-ule,” Algebra and Discrete Mathematics, vol. 1, pp. 128-143, 2016.[7] E. Yaraneri, “Intersection graphs of modules,” J. Algebra Appl., vol. 12, 2013, 1250218.

On A Graph Of Submodules

Year 2019, Volume: 23 Issue: 3, 396 - 402, 01.06.2019
https://doi.org/10.16984/saufenbilder.483138

Abstract

Let
S be an assosiative ring with identitiy and N be a right S-module. We define
the non-maximal graph
m(N) of N with all non-trivial submodules of N as vertices
and two distinct vertices  A,B are
adjecent if and only if A + B is not maximal submodule of N. In this paper, we
investigate the connectivity, completeness,  girth, domination nuber, cut edges,
perfectness and r-partite of
m(N). Moreover,  we
give connections between the graph-theoretic properties of
m(N) and algebraic properties of
N.

References

  • [1] S. Akbari, H.A. Tavallae and S. Khalashi Gheze-lahmad, “Intersection graphs of submodules of a modules,” J. Algebra and Its Aplications, vol. 11, no. 1, 2012, 1250019.[2] F.W. Anderson and K.R. Fuller, Rings and Cat-egories of Modules, Springer, New York, 1992.[3] J.A. Bandy and U.S.R. Murty, Graph Theory, Springer, New York, 2008.[4] I. Beck, “Coloring of a commutative ring,” J. Algebra, vol. 116, pp. 208-226, 1998.[5] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, “Intersection graphs of ideals of rings,” Discrete Math., vol. 309, pp. 5381-5392, 2009. [6] Loft Ali Mahdavi and Yahya Talebi, “Co-intersection graph of submodules of a mod-ule,” Algebra and Discrete Mathematics, vol. 1, pp. 128-143, 2016.[7] E. Yaraneri, “Intersection graphs of modules,” J. Algebra Appl., vol. 12, 2013, 1250218.
There are 1 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ali Öztürk 0000-0001-6014-9112

Tahire Özen 0000-0002-8630-5643

Erol Yılmaz This is me 0000-0003-0763-9408

Publication Date June 1, 2019
Submission Date November 15, 2018
Acceptance Date December 20, 2018
Published in Issue Year 2019 Volume: 23 Issue: 3

Cite

APA Öztürk, A., Özen, T., & Yılmaz, E. (2019). On A Graph Of Submodules. Sakarya University Journal of Science, 23(3), 396-402. https://doi.org/10.16984/saufenbilder.483138
AMA Öztürk A, Özen T, Yılmaz E. On A Graph Of Submodules. SAUJS. June 2019;23(3):396-402. doi:10.16984/saufenbilder.483138
Chicago Öztürk, Ali, Tahire Özen, and Erol Yılmaz. “On A Graph Of Submodules”. Sakarya University Journal of Science 23, no. 3 (June 2019): 396-402. https://doi.org/10.16984/saufenbilder.483138.
EndNote Öztürk A, Özen T, Yılmaz E (June 1, 2019) On A Graph Of Submodules. Sakarya University Journal of Science 23 3 396–402.
IEEE A. Öztürk, T. Özen, and E. Yılmaz, “On A Graph Of Submodules”, SAUJS, vol. 23, no. 3, pp. 396–402, 2019, doi: 10.16984/saufenbilder.483138.
ISNAD Öztürk, Ali et al. “On A Graph Of Submodules”. Sakarya University Journal of Science 23/3 (June 2019), 396-402. https://doi.org/10.16984/saufenbilder.483138.
JAMA Öztürk A, Özen T, Yılmaz E. On A Graph Of Submodules. SAUJS. 2019;23:396–402.
MLA Öztürk, Ali et al. “On A Graph Of Submodules”. Sakarya University Journal of Science, vol. 23, no. 3, 2019, pp. 396-02, doi:10.16984/saufenbilder.483138.
Vancouver Öztürk A, Özen T, Yılmaz E. On A Graph Of Submodules. SAUJS. 2019;23(3):396-402.