Research Article
BibTex RIS Cite

Determination of Mechanical Properties of Natural Sandwich Composites Produced by Using Waste Material

Year 2019, Volume: 23 Issue: 4, 569 - 582, 01.08.2019
https://doi.org/10.16984/saufenbilder.486846

Abstract

In the recent year, with the
development of technology the acceleration of the manufacturing of new products
has increased the use of raw materials in the industry. In addition to
decreasing underground resources, increased environmental pollution has opened
the way for the use of natural materials in the industry. Also, the reuse of
materials, which were recycled by recovery methods, is both conservation and
economical method in terms of raw material deficiency. In this study,
mechanical properties of sandwich composites made of natural and recycled
material were investigated. In this context, core material with different
thicknesses (4 mm, 8 mm and 12 mm) were produced using different size granules
(1 mm, 2 mm and 4 mm), which were recycled from the used vehicle tire. Sandwich
composite materials have become final with the combination of core materials
with natural jute fabric reinforced laminated composites. In order to test the
usability of the produced sandwich composite materials as building material, the
mechanical behaviours of the sandwich composite were investigated under tension
and compression load. Test results show that mechanical behaviour of the
material varies according to the granular size, thickness of the core material,
and fiber orientation of reinforcement fabric.

References

  • [1] C. Elanchezhian, B. V. Ramnath, G. Ramakrishnan, M. Rajendrakumar, V. Naveenkumar, and M. K. Saravanakumar, “Review on mechanical properties of natural fiber composites.,” Mater. Today Proc., vol. 5, no. 1, pp. 1785–1790, 2018.
  • [2] M. Rajesh and T. Kanish, “Mechanical Properties of Natural Fiber Sandwich Composite: Effect of Core Layer,” Mech. Mater. Sci. Eng. MMSE J. Open Access, vol. 9, pp. 1–5, 2017.
  • [3] M. Karahan, H. Gul, N. Karahan, and J. Ivens, “Static behavior of three-dimensional ıntegrated core sandwich composites subjected to three-point bending,” J. Reinf. Plast. Compos., vol. 32, no. 9, pp. 664–678, May 2013.
  • [4] H. E. Balcıoğlu, “FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL,” Mugla J. Sci. Technol., pp. 64–73, Jun. 2018.
  • [5] B. Wang, L. Wu, X. Jin, S. Du, Y. Sun, and L. Ma, “Experimental investigation of 3D sandwich structure with core reinforced by composite columns,” Mater. Des., vol. 31, no. 1, pp. 158–165, Jan. 2010.
  • [6] Y. C. Shiah, L. Tseng, J. C. Hsu, and J. H. Huang, “Experimental Characterization of an Integrated Sandwich Composite Using 3D Woven Fabrics as the Core Material,” J. Thermoplast. Compos. Mater., vol. 17, no. 3, pp. 229–243, May 2004.
  • [7] L. J. Lee, K. Y. Huang, and Y. J. Fann, “Dynamic Responses of Composite Sandwich Plate Impacted by a Rigid Ball*,” J. Compos. Mater., vol. 27, no. 13, pp. 1238–1256, Dec. 1993.
  • [8] A. W. Van Vuure, J. A. Ivens, and I. Verpoest, “Mechanical properties of composite panels based on woven sandwich-fabric preforms,” Compos. Part Appl. Sci. Manuf., vol. 31, no. 7, pp. 671–680, 2000.
  • [9] S. . Joshi, L. . Drzal, A. . Mohanty, and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites?,” Compos. Part Appl. Sci. Manuf., vol. 35, no. 3, pp. 371–376, Mar. 2004.
  • [10] R. D. S. G. Campilho, D. C. Moura, D. J. S. Gonçalves, J. F. M. G. da Silva, M. D. Banea, and L. F. M. da Silva, “Fracture toughness determination of adhesive and co-cured joints in natural fibre composites,” Compos. Part B Eng., vol. 50, pp. 120–126, Jul. 2013.
  • [11] Z. Salleh, Y. M. Taib, K. M. Hyie, M. Mihat, M. N. Berhan, and M. A. A. Ghani, “Fracture Toughness Investigation on Long Kenaf/Woven Glass Hybrid Composite Due To Water Absorption Effect,” Procedia Eng., vol. 41, pp. 1667–1673, 2012.
  • [12] K. J. Wong, S. Zahi, K. O. Low, and C. C. Lim, “Fracture characterisation of short bamboo fibre reinforced polyester composites,” Mater. Des., vol. 31, no. 9, pp. 4147–4154, Oct. 2010.
  • [13] X. Y. Liu and G. C. Dai, “Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites,” Express Polym. Lett., vol. 1, no. 5, pp. 299–307, 2007.
  • [14] A. V. Rajulu et al., “Mechanical Properties of Short, Natural Fiber Hildegardia populifolia-reinforced Styrenated Polyester Composites,” J. Reinf. Plast. Compos., vol. 24, no. 4, pp. 423–428, Mar. 2005.
  • [15] S. N. Monteiro, L. A. H. Terrones, and J. R. M. D’Almeida, “Mechanical performance of coir fiber/polyester composites,” Polym. Test., vol. 27, no. 5, pp. 591–595, Aug. 2008.
  • [16] M. Jawaid, H. P. S. Abdul Khalil, A. Hassan, R. Dungani, and A. Hadiyane, “Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites,” Compos. Part B Eng., vol. 45, no. 1, pp. 619–624, Feb. 2013.
  • [17] F. Sarasini, J. Tirillò, C. Sergi, M. C. Seghini, L. Cozzarini, and N. Graupner, “Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites,” Compos. Struct., vol. 188, pp. 394–406, Mar. 2018.
  • [18] N. Lu and S. Oza, “A comparative study of the mechanical properties of hemp fiber with virgin and recycled high density polyethylene matrix,” Compos. Part B Eng., vol. 45, no. 1, pp. 1651–1656, Feb. 2013.
Year 2019, Volume: 23 Issue: 4, 569 - 582, 01.08.2019
https://doi.org/10.16984/saufenbilder.486846

Abstract

References

  • [1] C. Elanchezhian, B. V. Ramnath, G. Ramakrishnan, M. Rajendrakumar, V. Naveenkumar, and M. K. Saravanakumar, “Review on mechanical properties of natural fiber composites.,” Mater. Today Proc., vol. 5, no. 1, pp. 1785–1790, 2018.
  • [2] M. Rajesh and T. Kanish, “Mechanical Properties of Natural Fiber Sandwich Composite: Effect of Core Layer,” Mech. Mater. Sci. Eng. MMSE J. Open Access, vol. 9, pp. 1–5, 2017.
  • [3] M. Karahan, H. Gul, N. Karahan, and J. Ivens, “Static behavior of three-dimensional ıntegrated core sandwich composites subjected to three-point bending,” J. Reinf. Plast. Compos., vol. 32, no. 9, pp. 664–678, May 2013.
  • [4] H. E. Balcıoğlu, “FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL,” Mugla J. Sci. Technol., pp. 64–73, Jun. 2018.
  • [5] B. Wang, L. Wu, X. Jin, S. Du, Y. Sun, and L. Ma, “Experimental investigation of 3D sandwich structure with core reinforced by composite columns,” Mater. Des., vol. 31, no. 1, pp. 158–165, Jan. 2010.
  • [6] Y. C. Shiah, L. Tseng, J. C. Hsu, and J. H. Huang, “Experimental Characterization of an Integrated Sandwich Composite Using 3D Woven Fabrics as the Core Material,” J. Thermoplast. Compos. Mater., vol. 17, no. 3, pp. 229–243, May 2004.
  • [7] L. J. Lee, K. Y. Huang, and Y. J. Fann, “Dynamic Responses of Composite Sandwich Plate Impacted by a Rigid Ball*,” J. Compos. Mater., vol. 27, no. 13, pp. 1238–1256, Dec. 1993.
  • [8] A. W. Van Vuure, J. A. Ivens, and I. Verpoest, “Mechanical properties of composite panels based on woven sandwich-fabric preforms,” Compos. Part Appl. Sci. Manuf., vol. 31, no. 7, pp. 671–680, 2000.
  • [9] S. . Joshi, L. . Drzal, A. . Mohanty, and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites?,” Compos. Part Appl. Sci. Manuf., vol. 35, no. 3, pp. 371–376, Mar. 2004.
  • [10] R. D. S. G. Campilho, D. C. Moura, D. J. S. Gonçalves, J. F. M. G. da Silva, M. D. Banea, and L. F. M. da Silva, “Fracture toughness determination of adhesive and co-cured joints in natural fibre composites,” Compos. Part B Eng., vol. 50, pp. 120–126, Jul. 2013.
  • [11] Z. Salleh, Y. M. Taib, K. M. Hyie, M. Mihat, M. N. Berhan, and M. A. A. Ghani, “Fracture Toughness Investigation on Long Kenaf/Woven Glass Hybrid Composite Due To Water Absorption Effect,” Procedia Eng., vol. 41, pp. 1667–1673, 2012.
  • [12] K. J. Wong, S. Zahi, K. O. Low, and C. C. Lim, “Fracture characterisation of short bamboo fibre reinforced polyester composites,” Mater. Des., vol. 31, no. 9, pp. 4147–4154, Oct. 2010.
  • [13] X. Y. Liu and G. C. Dai, “Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites,” Express Polym. Lett., vol. 1, no. 5, pp. 299–307, 2007.
  • [14] A. V. Rajulu et al., “Mechanical Properties of Short, Natural Fiber Hildegardia populifolia-reinforced Styrenated Polyester Composites,” J. Reinf. Plast. Compos., vol. 24, no. 4, pp. 423–428, Mar. 2005.
  • [15] S. N. Monteiro, L. A. H. Terrones, and J. R. M. D’Almeida, “Mechanical performance of coir fiber/polyester composites,” Polym. Test., vol. 27, no. 5, pp. 591–595, Aug. 2008.
  • [16] M. Jawaid, H. P. S. Abdul Khalil, A. Hassan, R. Dungani, and A. Hadiyane, “Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites,” Compos. Part B Eng., vol. 45, no. 1, pp. 619–624, Feb. 2013.
  • [17] F. Sarasini, J. Tirillò, C. Sergi, M. C. Seghini, L. Cozzarini, and N. Graupner, “Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites,” Compos. Struct., vol. 188, pp. 394–406, Mar. 2018.
  • [18] N. Lu and S. Oza, “A comparative study of the mechanical properties of hemp fiber with virgin and recycled high density polyethylene matrix,” Compos. Part B Eng., vol. 45, no. 1, pp. 1651–1656, Feb. 2013.
There are 18 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Ersen Balcıoğlu 0000-0002-8579-5142

Raif Sakin 0000-0001-6009-9573

Publication Date August 1, 2019
Submission Date November 23, 2018
Acceptance Date January 22, 2019
Published in Issue Year 2019 Volume: 23 Issue: 4

Cite

APA Balcıoğlu, E., & Sakin, R. (2019). Determination of Mechanical Properties of Natural Sandwich Composites Produced by Using Waste Material. Sakarya University Journal of Science, 23(4), 569-582. https://doi.org/10.16984/saufenbilder.486846
AMA Balcıoğlu E, Sakin R. Determination of Mechanical Properties of Natural Sandwich Composites Produced by Using Waste Material. SAUJS. August 2019;23(4):569-582. doi:10.16984/saufenbilder.486846
Chicago Balcıoğlu, Ersen, and Raif Sakin. “Determination of Mechanical Properties of Natural Sandwich Composites Produced by Using Waste Material”. Sakarya University Journal of Science 23, no. 4 (August 2019): 569-82. https://doi.org/10.16984/saufenbilder.486846.
EndNote Balcıoğlu E, Sakin R (August 1, 2019) Determination of Mechanical Properties of Natural Sandwich Composites Produced by Using Waste Material. Sakarya University Journal of Science 23 4 569–582.
IEEE E. Balcıoğlu and R. Sakin, “Determination of Mechanical Properties of Natural Sandwich Composites Produced by Using Waste Material”, SAUJS, vol. 23, no. 4, pp. 569–582, 2019, doi: 10.16984/saufenbilder.486846.
ISNAD Balcıoğlu, Ersen - Sakin, Raif. “Determination of Mechanical Properties of Natural Sandwich Composites Produced by Using Waste Material”. Sakarya University Journal of Science 23/4 (August 2019), 569-582. https://doi.org/10.16984/saufenbilder.486846.
JAMA Balcıoğlu E, Sakin R. Determination of Mechanical Properties of Natural Sandwich Composites Produced by Using Waste Material. SAUJS. 2019;23:569–582.
MLA Balcıoğlu, Ersen and Raif Sakin. “Determination of Mechanical Properties of Natural Sandwich Composites Produced by Using Waste Material”. Sakarya University Journal of Science, vol. 23, no. 4, 2019, pp. 569-82, doi:10.16984/saufenbilder.486846.
Vancouver Balcıoğlu E, Sakin R. Determination of Mechanical Properties of Natural Sandwich Composites Produced by Using Waste Material. SAUJS. 2019;23(4):569-82.