Research Article
BibTex RIS Cite

Different Approximation to Fuzzy Ring Homomorphisms

Year 2019, Volume: 23 Issue: 6, 1163 - 1172, 01.12.2019
https://doi.org/10.16984/saufenbilder.379634

Abstract

Bu
çalışmada TL-halka homomorfizmaları tanımı verildi. Literatürde fuzzy halka
homomorfizma tanımını Malik ve Mordeson kendi tanımladıkları fuzzy fonksiyon
tanımını kullanarak vermişlerdir. Bu çalışmada biz fuzzy halka homomorfizması
tanımını Demirci’nin Fuzzy Fonksiyon tanımını kullanarak verdik. Klasik
cebirdeki halka homomorfizmaları ile ilgili bazı tanım ve teoremleri fuzzy
cebirine taşıdık ve ispatladık.

References

  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper I: Basic Analytical and Algebraic Properties, Fuzzy Sets and Systems 143(2004) 5-26.
  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper II: General Constructions and Parameterized Families, Fuzzy Sets and Systems 145 (2004) 411-438.
  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper III: Continuous t-Norms, Fuzzy Sets and Systems 145 (2004) 439-454.
  • Demirci M. and Recasens J., Fuzzy Groups, Fuzzy Functions and Fuzzy Equivalence Relations, Fuzzy Sets and Systems 144 (2004) 441-458.
  • Demirci M., Fuzzy Functions and Their Applications, Journal of .Mathematical Analysis and Applications 252 (2000) 495-517.
  • Demirci M., Fundamentals of M-vague Algebra and M-Vague Arithmetic Operations, Int. J. Uncertainly, Fuzziness Knowledge-Based Systems 10, 1 (2002) 25-75.
  • ostak A. P., Fuzzy Functions and an Extension of the Category L-Top of Chang-Goguen L-Topological Spaces, Proceedings of the Ninth Prague Symposium, pp. 271-294, Topology Atlas, Toronto, 2002
  • Wang Z. D. and Yu Y. D., ТL-subrings and ТL-ideals, Part 2: Generated ТL-ideals, Fuzzy Sets and Systems 87 (1997) 209-217.
  • Wang Z. D. and Yu Y. D., ТL-subrings and ТL-ideals, Part 1: Basic concepts, Fuzzy Sets and Systems 68 (1994) 93-103.
  • Zadeh L. A., Fuzzy Sets, Information and Control, 8 (1965) 338-353.
  • Karaçal F. and Khadjiev D, ∨-Distributive and infinetly ∨-distributive t-norms on complete lattice, Fuzzy Sets and Systems 151 (2005) 341-352
  • Baets B. De, Mesiar R., Triangular norms on product lattices, Fuzzy Sets and Systems 104 (1999) 61-75
  • A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517
  • W.J. Liu, Fuzzy Invariant supgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133-139
  • W.J. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems 11 (1983) 31-41
  • D.S. Malik, J.N. Mordeson, Fuzzy homomorphisms of rings, Fuzzy Sets and Systems, 46 (1992) 139-146
  • Yamak, S., Fuzzy Algebraic Structure and Fuzzy Representations, Postgraduate Thesis, Karadeniz Technical University, Institute of Science and Technology, 1995.
Year 2019, Volume: 23 Issue: 6, 1163 - 1172, 01.12.2019
https://doi.org/10.16984/saufenbilder.379634

Abstract

References

  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper I: Basic Analytical and Algebraic Properties, Fuzzy Sets and Systems 143(2004) 5-26.
  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper II: General Constructions and Parameterized Families, Fuzzy Sets and Systems 145 (2004) 411-438.
  • Klement E.P., Mesiar R. and Pap E., Triangular Norms. Position Paper III: Continuous t-Norms, Fuzzy Sets and Systems 145 (2004) 439-454.
  • Demirci M. and Recasens J., Fuzzy Groups, Fuzzy Functions and Fuzzy Equivalence Relations, Fuzzy Sets and Systems 144 (2004) 441-458.
  • Demirci M., Fuzzy Functions and Their Applications, Journal of .Mathematical Analysis and Applications 252 (2000) 495-517.
  • Demirci M., Fundamentals of M-vague Algebra and M-Vague Arithmetic Operations, Int. J. Uncertainly, Fuzziness Knowledge-Based Systems 10, 1 (2002) 25-75.
  • ostak A. P., Fuzzy Functions and an Extension of the Category L-Top of Chang-Goguen L-Topological Spaces, Proceedings of the Ninth Prague Symposium, pp. 271-294, Topology Atlas, Toronto, 2002
  • Wang Z. D. and Yu Y. D., ТL-subrings and ТL-ideals, Part 2: Generated ТL-ideals, Fuzzy Sets and Systems 87 (1997) 209-217.
  • Wang Z. D. and Yu Y. D., ТL-subrings and ТL-ideals, Part 1: Basic concepts, Fuzzy Sets and Systems 68 (1994) 93-103.
  • Zadeh L. A., Fuzzy Sets, Information and Control, 8 (1965) 338-353.
  • Karaçal F. and Khadjiev D, ∨-Distributive and infinetly ∨-distributive t-norms on complete lattice, Fuzzy Sets and Systems 151 (2005) 341-352
  • Baets B. De, Mesiar R., Triangular norms on product lattices, Fuzzy Sets and Systems 104 (1999) 61-75
  • A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517
  • W.J. Liu, Fuzzy Invariant supgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133-139
  • W.J. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems 11 (1983) 31-41
  • D.S. Malik, J.N. Mordeson, Fuzzy homomorphisms of rings, Fuzzy Sets and Systems, 46 (1992) 139-146
  • Yamak, S., Fuzzy Algebraic Structure and Fuzzy Representations, Postgraduate Thesis, Karadeniz Technical University, Institute of Science and Technology, 1995.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ümit Deniz 0000-0002-9248-2769

Publication Date December 1, 2019
Submission Date January 16, 2018
Acceptance Date July 11, 2019
Published in Issue Year 2019 Volume: 23 Issue: 6

Cite

APA Deniz, Ü. (2019). Different Approximation to Fuzzy Ring Homomorphisms. Sakarya University Journal of Science, 23(6), 1163-1172. https://doi.org/10.16984/saufenbilder.379634
AMA Deniz Ü. Different Approximation to Fuzzy Ring Homomorphisms. SAUJS. December 2019;23(6):1163-1172. doi:10.16984/saufenbilder.379634
Chicago Deniz, Ümit. “Different Approximation to Fuzzy Ring Homomorphisms”. Sakarya University Journal of Science 23, no. 6 (December 2019): 1163-72. https://doi.org/10.16984/saufenbilder.379634.
EndNote Deniz Ü (December 1, 2019) Different Approximation to Fuzzy Ring Homomorphisms. Sakarya University Journal of Science 23 6 1163–1172.
IEEE Ü. Deniz, “Different Approximation to Fuzzy Ring Homomorphisms”, SAUJS, vol. 23, no. 6, pp. 1163–1172, 2019, doi: 10.16984/saufenbilder.379634.
ISNAD Deniz, Ümit. “Different Approximation to Fuzzy Ring Homomorphisms”. Sakarya University Journal of Science 23/6 (December 2019), 1163-1172. https://doi.org/10.16984/saufenbilder.379634.
JAMA Deniz Ü. Different Approximation to Fuzzy Ring Homomorphisms. SAUJS. 2019;23:1163–1172.
MLA Deniz, Ümit. “Different Approximation to Fuzzy Ring Homomorphisms”. Sakarya University Journal of Science, vol. 23, no. 6, 2019, pp. 1163-72, doi:10.16984/saufenbilder.379634.
Vancouver Deniz Ü. Different Approximation to Fuzzy Ring Homomorphisms. SAUJS. 2019;23(6):1163-72.