Research Article
BibTex RIS Cite

High-temperature thermostatistical properties of deformed quantum gas in two dimensions

Year 2019, Volume: 23 Issue: 6, 1273 - 1278, 01.12.2019
https://doi.org/10.16984/saufenbilder.555231

Abstract

In this
study, we focus on the high-temperature thermostatistical properties of the q-deformed gas model in two spatial
dimensions. Some important thermodynamical functions such as internal energy,
entropy, specific heat are calculated depending on deformation parameter q. Moreover, the first five deformed
virial coefficients in the equation of state of the model for two dimensions
are derived. Also, the results obtained in this work are compared with the
results of the undeformed gas model.

References

  • Referans 1 M. A. Martin-Delgado, “Planck distribution for a q-boson gas,” Journal of Physics A: Mathematical and General, vol. 24, pp. L1285-L1291, 1991.
  • Referans 2 M. Arik, D. D. Coon, “Hilbert spaces of analytic functions and generalized coherent states,” Journal of Mathematical Physics, vol. 17, pp. 524-527, 1976.
  • Referans 3 L. C. Biedenharn, “The quantum group SUq(2) and a q-analogue of the boson operators,” Journal of Physics A: Mathematical and General, vol. 22, pp. L873-L878, 1989.
  • Referans 4 A. J. Macfarlane, “On q-analogues of the quantum harmonic oscillator and the quantum group SUq(2),” Journal of Physics A: Mathematical and General, vol. 22, pp. 4581-4588, 1989.
  • Referans 5 K. S. Viswanathan, R. Parthasarathy, .R. Jagannathan, “Generalized q-fermion oscillators and q-coherent states,” Journal of Physics A: Mathematical and General, vol. 25, pp. L335-L339, 1992.
  • Referans 6 M. Chaichian, R. Gonzalez Felipe, C. Montonen, “Statistics of q-oscillators quons and relations to fractional statistics,” Journal of Physics A: Mathematical and General, vol. 26, pp. 4017-4034, 1993.
  • Referans 7 Y. J. Ng, “Comment on the q-analogues of the harmonic oscillator,” Journal of Physics A: Mathematical and Theoretical, vol. 23, no. 6, pp. 1023-1027, 1990.
  • Referans 8 C. R. Lee, J. P. Yu, “On q-analogues of the statistical distribution,” Physics Letters A, vol. 150, no. 2, pp. 63-66, 1990.
  • Referans 9 H. S. Song, S. X. Ding, I. An, “Statistical mechanical properties of the q-oscillator system,” Journal of Physics A: Mathematical and Theoretical, vol. 26, no. 20, pp. 5197-5205, 1993.
  • Referans 10 J. Crnugelj, M. Martinis, V. Mikuta-Martinis, “Jaynes-Cummings model and the deformed oscillator algebra,” Physics Letters A, vol. 188, pp. 347-354, 1994.
  • Referans 11 A. Lavagno, P. Narayana Swamy, “Generalized thermodynamics of q-deformed bosons and fermions,” Physical Review E, vol. 65, pp. 036101-1-036101-5, 2002.
  • Referans 12 G. Su, S. Cai, H. Chen, “Bose-Einstein condensation of a relativistic q-deformed Bose gas,” Journal of Physics A: Mathematical and Theoretical, vol. 41, pp. 045007, 2008.
  • Referans 13 B. Mirza, H. Mohammadzadeh, “Thermodynamic geometry of deformed bosons and fermions,” Journal of Physics A: Mathematical and Theoretical, vol. 44, pp. 0475003, 2011.
  • Referans 14 A. Algin, M. Senay, “High-temperature behavior of a deformed Fermi gas obeying interpolating statistics,” Physical Review E, vol. 85, pp. 041123-1-041123-10, 2012.
  • Referans 15 A. A. Marinho, F. A. Brito, C. Chesman, “Thermal properties of a solid through q-deformed algebra,” Physica A, vol. 391, pp. 3424-3434, 2012.
  • Referans 16 E. Dil, “Q-Deformed Einstein equations, ”Canadian Journal of Physics, vol. 93, no. 11, pp. 1274-1278, 2015.
  • Referans 17 M. Senay, S. Kibaroğlu, “Thermosize effects in a q-deformed fermion gas model, ”Modern Physics Letters B, vol. 32, no. 20, pp. 1850230-1-1850230-9 2018.
  • Referans 18 A. Lavagno, P. Narayana Swamy, “Deformed Quantum Statistics in Two Dimensions,” International Journal of Modern Physics B, vol. 23, no. 2, pp. 235-250, 2009.
  • Referans 19 G. B. Arfken, H. J. Weber, F. E. Harris, Mathematical Methods for Physicst 7rd ed., Amsterdam, Elsevier, 2013.
Year 2019, Volume: 23 Issue: 6, 1273 - 1278, 01.12.2019
https://doi.org/10.16984/saufenbilder.555231

Abstract

References

  • Referans 1 M. A. Martin-Delgado, “Planck distribution for a q-boson gas,” Journal of Physics A: Mathematical and General, vol. 24, pp. L1285-L1291, 1991.
  • Referans 2 M. Arik, D. D. Coon, “Hilbert spaces of analytic functions and generalized coherent states,” Journal of Mathematical Physics, vol. 17, pp. 524-527, 1976.
  • Referans 3 L. C. Biedenharn, “The quantum group SUq(2) and a q-analogue of the boson operators,” Journal of Physics A: Mathematical and General, vol. 22, pp. L873-L878, 1989.
  • Referans 4 A. J. Macfarlane, “On q-analogues of the quantum harmonic oscillator and the quantum group SUq(2),” Journal of Physics A: Mathematical and General, vol. 22, pp. 4581-4588, 1989.
  • Referans 5 K. S. Viswanathan, R. Parthasarathy, .R. Jagannathan, “Generalized q-fermion oscillators and q-coherent states,” Journal of Physics A: Mathematical and General, vol. 25, pp. L335-L339, 1992.
  • Referans 6 M. Chaichian, R. Gonzalez Felipe, C. Montonen, “Statistics of q-oscillators quons and relations to fractional statistics,” Journal of Physics A: Mathematical and General, vol. 26, pp. 4017-4034, 1993.
  • Referans 7 Y. J. Ng, “Comment on the q-analogues of the harmonic oscillator,” Journal of Physics A: Mathematical and Theoretical, vol. 23, no. 6, pp. 1023-1027, 1990.
  • Referans 8 C. R. Lee, J. P. Yu, “On q-analogues of the statistical distribution,” Physics Letters A, vol. 150, no. 2, pp. 63-66, 1990.
  • Referans 9 H. S. Song, S. X. Ding, I. An, “Statistical mechanical properties of the q-oscillator system,” Journal of Physics A: Mathematical and Theoretical, vol. 26, no. 20, pp. 5197-5205, 1993.
  • Referans 10 J. Crnugelj, M. Martinis, V. Mikuta-Martinis, “Jaynes-Cummings model and the deformed oscillator algebra,” Physics Letters A, vol. 188, pp. 347-354, 1994.
  • Referans 11 A. Lavagno, P. Narayana Swamy, “Generalized thermodynamics of q-deformed bosons and fermions,” Physical Review E, vol. 65, pp. 036101-1-036101-5, 2002.
  • Referans 12 G. Su, S. Cai, H. Chen, “Bose-Einstein condensation of a relativistic q-deformed Bose gas,” Journal of Physics A: Mathematical and Theoretical, vol. 41, pp. 045007, 2008.
  • Referans 13 B. Mirza, H. Mohammadzadeh, “Thermodynamic geometry of deformed bosons and fermions,” Journal of Physics A: Mathematical and Theoretical, vol. 44, pp. 0475003, 2011.
  • Referans 14 A. Algin, M. Senay, “High-temperature behavior of a deformed Fermi gas obeying interpolating statistics,” Physical Review E, vol. 85, pp. 041123-1-041123-10, 2012.
  • Referans 15 A. A. Marinho, F. A. Brito, C. Chesman, “Thermal properties of a solid through q-deformed algebra,” Physica A, vol. 391, pp. 3424-3434, 2012.
  • Referans 16 E. Dil, “Q-Deformed Einstein equations, ”Canadian Journal of Physics, vol. 93, no. 11, pp. 1274-1278, 2015.
  • Referans 17 M. Senay, S. Kibaroğlu, “Thermosize effects in a q-deformed fermion gas model, ”Modern Physics Letters B, vol. 32, no. 20, pp. 1850230-1-1850230-9 2018.
  • Referans 18 A. Lavagno, P. Narayana Swamy, “Deformed Quantum Statistics in Two Dimensions,” International Journal of Modern Physics B, vol. 23, no. 2, pp. 235-250, 2009.
  • Referans 19 G. B. Arfken, H. J. Weber, F. E. Harris, Mathematical Methods for Physicst 7rd ed., Amsterdam, Elsevier, 2013.
There are 19 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Mustafa Şenay 0000-0002-9480-9040

Publication Date December 1, 2019
Submission Date April 17, 2019
Acceptance Date September 11, 2019
Published in Issue Year 2019 Volume: 23 Issue: 6

Cite

APA Şenay, M. (2019). High-temperature thermostatistical properties of deformed quantum gas in two dimensions. Sakarya University Journal of Science, 23(6), 1273-1278. https://doi.org/10.16984/saufenbilder.555231
AMA Şenay M. High-temperature thermostatistical properties of deformed quantum gas in two dimensions. SAUJS. December 2019;23(6):1273-1278. doi:10.16984/saufenbilder.555231
Chicago Şenay, Mustafa. “High-Temperature Thermostatistical Properties of Deformed Quantum Gas in Two Dimensions”. Sakarya University Journal of Science 23, no. 6 (December 2019): 1273-78. https://doi.org/10.16984/saufenbilder.555231.
EndNote Şenay M (December 1, 2019) High-temperature thermostatistical properties of deformed quantum gas in two dimensions. Sakarya University Journal of Science 23 6 1273–1278.
IEEE M. Şenay, “High-temperature thermostatistical properties of deformed quantum gas in two dimensions”, SAUJS, vol. 23, no. 6, pp. 1273–1278, 2019, doi: 10.16984/saufenbilder.555231.
ISNAD Şenay, Mustafa. “High-Temperature Thermostatistical Properties of Deformed Quantum Gas in Two Dimensions”. Sakarya University Journal of Science 23/6 (December 2019), 1273-1278. https://doi.org/10.16984/saufenbilder.555231.
JAMA Şenay M. High-temperature thermostatistical properties of deformed quantum gas in two dimensions. SAUJS. 2019;23:1273–1278.
MLA Şenay, Mustafa. “High-Temperature Thermostatistical Properties of Deformed Quantum Gas in Two Dimensions”. Sakarya University Journal of Science, vol. 23, no. 6, 2019, pp. 1273-8, doi:10.16984/saufenbilder.555231.
Vancouver Şenay M. High-temperature thermostatistical properties of deformed quantum gas in two dimensions. SAUJS. 2019;23(6):1273-8.