Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 25 Sayı: 1, 30 - 39, 01.02.2021
https://doi.org/10.16984/saufenbilder.729891

Öz

Kaynakça

  • [1] K. Hunger, Industrial Dyes: Chemistry, Properties. 2003.
  • [2] H. Xu, X. Huang, W. Zhang, G. Chen, W. Zhu, and X. Zhong, “Quantum dots acting as energy acceptors with organic dyes as donors in solution,” ChemPhysChem, 2010.
  • [3] A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence Resonance Energy Transfer between Quantum Dot Donors and Dye-Labeled Protein Acceptors,” J. Am. Chem. Soc., 2004.
  • [4] M. S. Smirnov et al., “Control of direction of nonradiative resonance energy transfer in hybrid associates of colloidal Ag2S/TGA QDs with thionine molecules,” J. Nanoparticle Res., 2019.
  • [5] M. F. Frasco, V. Vamvakaki, and N. Chaniotakis, “Porphyrin decorated CdSe quantum dots for direct fluorescent sensing of metal ions,” J. Nanoparticle Res., 2010.
  • [6] H. Jang et al., “In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles,” J. Nanoparticle Res., 2016.
  • [7] M. Shalom, J. Albero, Z. Tachan, E. Martínez-Ferrero, A. Zaban, and E. Palomares, “Quantum dot-dye bilayer-sensitized solar cells: Breaking the limits imposed by the low absorbance of dye monolayers,” J. Phys. Chem. Lett., vol. 1, no. 7, pp. 1134–1138, 2010.
  • [8] O. Adegoke and T. Nyokong, “Effects of analytes on the fluorescence properties of CdTe@ZnS quantum dots decorated with cobalt tetraamino-phthalocyanine,” J. Lumin., 2014.
  • [9] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B, 1992.
  • [10] D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: A review,” Materials. 2010.
  • [11] E. Elibol and N. Tutkun, “Improving CdTe QDSSC’s performance by Cannula synthesis method of CdTe QD,” Mater. Sci. Semicond. Process., 2019.
  • [12] D. Sharma, R. Jha, and S. Kumar, “Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode,” Sol. Energy Mater. Sol. Cells, vol. 155, pp. 294–322, 2016.
  • [13] F. Li et al., “Emission tunable CdZnS/ZnSe core/shell quantum dots for white light emitting diodes,” J. Lumin., vol. 192, pp. 867–874, 2017.
  • [14] O. V Salata, “Journal of Nanobiotechnology,” J. Nanobiotechnology, vol. 6, no. 3, pp. 1–6, 2004.
  • [15] A. Baride, D. Engebretson, M. T. Berry, and P. Stanley May, “Quenching of coumarin emission by CdSe and CdSe/ZnS quantum dots: Implications for fluorescence reporting,” J. Lumin., 2013.
  • [16] M. S. Smirnov et al., “Luminescent Properties of Hybrid Nanostructures Based on Quantum Dots of CdS, Europium 1,3-Diketonate, and Methylene Blue Molecules,” Opt. Spectrosc., vol. 125, no. 2, pp. 249–255, Aug. 2018.
  • [17] A. O. Orlova, V. G. Maslov, A. V. Baranov, I. Gounko, and S. Byrne, “Spectral-luminescence study of the formation of QD-sulfophthalocyanine molecule complexes in an aqueous solution,” Opt. Spectrosc. (English Transl. Opt. i Spektrosk., 2008.
  • [18] O. V. Ovchinnikov et al., “Spectroscopic investigation of colloidal CdS quantum dots-methylene blue hybrid associates,” J. Nanoparticle Res., 2014.
  • [19] A. Nezamzadeh-Ejhieh and H. Zabihi-Mobarakeh, “Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite,” J. Ind. Eng. Chem., 2014.
  • [20] R. Flores, “A rapid and reproducible assay for quantitative estimation of proteins using bromophenol blue,” Anal. Biochem., 1978.
  • [21] J. Hong, N. Ta, S. gui Yang, Y. zi Liu, and C. Sun, “Microwave-assisted direct photolysis of bromophenol blue using electrodeless discharge lamps,” Desalination, 2007.
  • [22] S. Kushwaha and L. Bahadur, “Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of Phloxine B and Bromophenol blue dyes on ZnO photoanode,” J. Lumin., 2015.
  • [23] A. V. Kalvelytė, A. Imbrasaitė, N. Krestnikova, and A. Stulpinas, “Adult Stem Cells and Anticancer Therapy,” 2017, pp. 123–202.
  • [24] M. A. Al-Omar, “Ofloxacin,” 2009, pp. 265–298.
  • [25] H. Alrabiah, “Levetiracetam,” 2019, pp. 167–204.
  • [26] P. G. JEFFERY and D. HUTCHISON, “Beryllium,” in Chemical Methods of Rock Analysis, Elsevier, 1981, pp. 102–106.
  • [27] V. Nand and M. J. Ellwood, “A simple colorimetric method for determining seawater alkalinity using bromophenol blue,” Limnol. Oceanogr. Methods, vol. 16, no. 7, pp. 401–410, Jul. 2018.
  • [28] L. He, L. Li, W. Wang, E. S. Abdel-Halim, J. Zhang, and J. J. Zhu, “Highly luminescent and biocompatible near-infrared core-shell CdSeTe/CdS/C quantum dots for probe labeling tumor cells,” Talanta, 2016.
  • [29] T. Debnath, S. Maiti, and H. N. Ghosh, “Unusually Slow Electron Cooling to Charge-Transfer State in Gradient CdTeSe Alloy Nanocrystals Mediated through Mn Atom,” J. Phys. Chem. Lett., 2016.
  • [30] E. Simonenko, A. Gomonov, N. Rolle, and L. Molodkina, “Modeling of H2O2 and UV oxidation of organic pollutants at wastewater post-treatment,” in Procedia Engineering, 2015.
  • [31] M. S. Smirnov, O. V. Ovchinnikov, A. O. Dedikova, B. I. Shapiro, A. G. Vitukhnovsky, and T. S. Shatskikh, “Luminescence properties of hybrid associates of colloidal CdS quantum dots with J-aggregates of thiatrimethine cyanine dye,” J. Lumin., vol. 176, pp. 77–85, Aug. 2016.
  • [32] A. Rakovich et al., “Photosensitizer methylene blue-semiconductor nanocrystals hybrid system for photodynamic therapy,” in Journal of Nanoscience and Nanotechnology, 2010.
  • [33] D. Severino, H. C. Junqueira, M. Gugliotti, D. S. Gabrielli, and M. S. Baptista, “Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue¶,” Photochem. Photobiol., 2003.
  • [34] R. C. Page et al., “Near-Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots,” Small, vol. 11, no. 13, pp. 1548–1554, 2015.
  • [35] M. Amelia, C. Lincheneau, S. Silvi, and A. Credi, “Electrochemical properties of CdSe and CdTe quantum dots,” Chem. Soc. Rev., vol. 41, no. 17, p. 5728, 2012.
  • [36] A. Rakovich, Y. P. Rakovich, and J. F. Donegan, “Optical studies of the methylene blue-semiconductor nanocrystals hybrid system,” in e-Journal of Surface Science and Nanotechnology, 2009.
  • [37] O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” BioImpacts, vol. 4, no. 3, pp. 149–166, 2014.

An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates

Yıl 2021, Cilt: 25 Sayı: 1, 30 - 39, 01.02.2021
https://doi.org/10.16984/saufenbilder.729891

Öz

The use of hybrid associates in biological, optoelectronics and energy fields are increasing day by day. In this context, in this study, CdSeTe Quantum dots (QD): Bromophenol Blue (BPB) hybrid associates were studied for the first time in the literature and their spectroscopic characterizations were examined. In the study, CdSeTe QDs were synthesized with trioctylphosphine (TOP) ligands by hot injection method, and it was planned that the BPB would passivate the surface of the QD by interacting with the TOP ligand of the CdSeTe QDs. CdSeTe QD: BPB hybrid associates were prepared in different concentrations, and the effects of QD: BPB ratios on absorbance and emission characterizations were examined. Structures have been characterized using Uv-vis, PL, ICP-OES and FTIR. With the results found, the predictive mechanism has been put forward.

Kaynakça

  • [1] K. Hunger, Industrial Dyes: Chemistry, Properties. 2003.
  • [2] H. Xu, X. Huang, W. Zhang, G. Chen, W. Zhu, and X. Zhong, “Quantum dots acting as energy acceptors with organic dyes as donors in solution,” ChemPhysChem, 2010.
  • [3] A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence Resonance Energy Transfer between Quantum Dot Donors and Dye-Labeled Protein Acceptors,” J. Am. Chem. Soc., 2004.
  • [4] M. S. Smirnov et al., “Control of direction of nonradiative resonance energy transfer in hybrid associates of colloidal Ag2S/TGA QDs with thionine molecules,” J. Nanoparticle Res., 2019.
  • [5] M. F. Frasco, V. Vamvakaki, and N. Chaniotakis, “Porphyrin decorated CdSe quantum dots for direct fluorescent sensing of metal ions,” J. Nanoparticle Res., 2010.
  • [6] H. Jang et al., “In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles,” J. Nanoparticle Res., 2016.
  • [7] M. Shalom, J. Albero, Z. Tachan, E. Martínez-Ferrero, A. Zaban, and E. Palomares, “Quantum dot-dye bilayer-sensitized solar cells: Breaking the limits imposed by the low absorbance of dye monolayers,” J. Phys. Chem. Lett., vol. 1, no. 7, pp. 1134–1138, 2010.
  • [8] O. Adegoke and T. Nyokong, “Effects of analytes on the fluorescence properties of CdTe@ZnS quantum dots decorated with cobalt tetraamino-phthalocyanine,” J. Lumin., 2014.
  • [9] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B, 1992.
  • [10] D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: A review,” Materials. 2010.
  • [11] E. Elibol and N. Tutkun, “Improving CdTe QDSSC’s performance by Cannula synthesis method of CdTe QD,” Mater. Sci. Semicond. Process., 2019.
  • [12] D. Sharma, R. Jha, and S. Kumar, “Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode,” Sol. Energy Mater. Sol. Cells, vol. 155, pp. 294–322, 2016.
  • [13] F. Li et al., “Emission tunable CdZnS/ZnSe core/shell quantum dots for white light emitting diodes,” J. Lumin., vol. 192, pp. 867–874, 2017.
  • [14] O. V Salata, “Journal of Nanobiotechnology,” J. Nanobiotechnology, vol. 6, no. 3, pp. 1–6, 2004.
  • [15] A. Baride, D. Engebretson, M. T. Berry, and P. Stanley May, “Quenching of coumarin emission by CdSe and CdSe/ZnS quantum dots: Implications for fluorescence reporting,” J. Lumin., 2013.
  • [16] M. S. Smirnov et al., “Luminescent Properties of Hybrid Nanostructures Based on Quantum Dots of CdS, Europium 1,3-Diketonate, and Methylene Blue Molecules,” Opt. Spectrosc., vol. 125, no. 2, pp. 249–255, Aug. 2018.
  • [17] A. O. Orlova, V. G. Maslov, A. V. Baranov, I. Gounko, and S. Byrne, “Spectral-luminescence study of the formation of QD-sulfophthalocyanine molecule complexes in an aqueous solution,” Opt. Spectrosc. (English Transl. Opt. i Spektrosk., 2008.
  • [18] O. V. Ovchinnikov et al., “Spectroscopic investigation of colloidal CdS quantum dots-methylene blue hybrid associates,” J. Nanoparticle Res., 2014.
  • [19] A. Nezamzadeh-Ejhieh and H. Zabihi-Mobarakeh, “Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite,” J. Ind. Eng. Chem., 2014.
  • [20] R. Flores, “A rapid and reproducible assay for quantitative estimation of proteins using bromophenol blue,” Anal. Biochem., 1978.
  • [21] J. Hong, N. Ta, S. gui Yang, Y. zi Liu, and C. Sun, “Microwave-assisted direct photolysis of bromophenol blue using electrodeless discharge lamps,” Desalination, 2007.
  • [22] S. Kushwaha and L. Bahadur, “Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of Phloxine B and Bromophenol blue dyes on ZnO photoanode,” J. Lumin., 2015.
  • [23] A. V. Kalvelytė, A. Imbrasaitė, N. Krestnikova, and A. Stulpinas, “Adult Stem Cells and Anticancer Therapy,” 2017, pp. 123–202.
  • [24] M. A. Al-Omar, “Ofloxacin,” 2009, pp. 265–298.
  • [25] H. Alrabiah, “Levetiracetam,” 2019, pp. 167–204.
  • [26] P. G. JEFFERY and D. HUTCHISON, “Beryllium,” in Chemical Methods of Rock Analysis, Elsevier, 1981, pp. 102–106.
  • [27] V. Nand and M. J. Ellwood, “A simple colorimetric method for determining seawater alkalinity using bromophenol blue,” Limnol. Oceanogr. Methods, vol. 16, no. 7, pp. 401–410, Jul. 2018.
  • [28] L. He, L. Li, W. Wang, E. S. Abdel-Halim, J. Zhang, and J. J. Zhu, “Highly luminescent and biocompatible near-infrared core-shell CdSeTe/CdS/C quantum dots for probe labeling tumor cells,” Talanta, 2016.
  • [29] T. Debnath, S. Maiti, and H. N. Ghosh, “Unusually Slow Electron Cooling to Charge-Transfer State in Gradient CdTeSe Alloy Nanocrystals Mediated through Mn Atom,” J. Phys. Chem. Lett., 2016.
  • [30] E. Simonenko, A. Gomonov, N. Rolle, and L. Molodkina, “Modeling of H2O2 and UV oxidation of organic pollutants at wastewater post-treatment,” in Procedia Engineering, 2015.
  • [31] M. S. Smirnov, O. V. Ovchinnikov, A. O. Dedikova, B. I. Shapiro, A. G. Vitukhnovsky, and T. S. Shatskikh, “Luminescence properties of hybrid associates of colloidal CdS quantum dots with J-aggregates of thiatrimethine cyanine dye,” J. Lumin., vol. 176, pp. 77–85, Aug. 2016.
  • [32] A. Rakovich et al., “Photosensitizer methylene blue-semiconductor nanocrystals hybrid system for photodynamic therapy,” in Journal of Nanoscience and Nanotechnology, 2010.
  • [33] D. Severino, H. C. Junqueira, M. Gugliotti, D. S. Gabrielli, and M. S. Baptista, “Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue¶,” Photochem. Photobiol., 2003.
  • [34] R. C. Page et al., “Near-Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots,” Small, vol. 11, no. 13, pp. 1548–1554, 2015.
  • [35] M. Amelia, C. Lincheneau, S. Silvi, and A. Credi, “Electrochemical properties of CdSe and CdTe quantum dots,” Chem. Soc. Rev., vol. 41, no. 17, p. 5728, 2012.
  • [36] A. Rakovich, Y. P. Rakovich, and J. F. Donegan, “Optical studies of the methylene blue-semiconductor nanocrystals hybrid system,” in e-Journal of Surface Science and Nanotechnology, 2009.
  • [37] O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar, and Y. Omidi, “Impacts of quantum dots in molecular detection and bioimaging of cancer,” BioImpacts, vol. 4, no. 3, pp. 149–166, 2014.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Erdem Elibol 0000-0003-0328-5534

Tuna Demirci 0000-0001-8933-4944

Yayımlanma Tarihi 1 Şubat 2021
Gönderilme Tarihi 30 Nisan 2020
Kabul Tarihi 26 Ekim 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 1

Kaynak Göster

APA Elibol, E., & Demirci, T. (2021). An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 30-39. https://doi.org/10.16984/saufenbilder.729891
AMA Elibol E, Demirci T. An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates. SAUJS. Şubat 2021;25(1):30-39. doi:10.16984/saufenbilder.729891
Chicago Elibol, Erdem, ve Tuna Demirci. “An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, sy. 1 (Şubat 2021): 30-39. https://doi.org/10.16984/saufenbilder.729891.
EndNote Elibol E, Demirci T (01 Şubat 2021) An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 1 30–39.
IEEE E. Elibol ve T. Demirci, “An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates”, SAUJS, c. 25, sy. 1, ss. 30–39, 2021, doi: 10.16984/saufenbilder.729891.
ISNAD Elibol, Erdem - Demirci, Tuna. “An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/1 (Şubat 2021), 30-39. https://doi.org/10.16984/saufenbilder.729891.
JAMA Elibol E, Demirci T. An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates. SAUJS. 2021;25:30–39.
MLA Elibol, Erdem ve Tuna Demirci. “An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 25, sy. 1, 2021, ss. 30-39, doi:10.16984/saufenbilder.729891.
Vancouver Elibol E, Demirci T. An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates. SAUJS. 2021;25(1):30-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.