Research Article
BibTex RIS Cite
Year 2022, Volume: 26 Issue: 3, 488 - 492, 30.06.2022
https://doi.org/10.16984/saufenbilder.1069960

Abstract

References

  • [1] M.A. Bennett, V. Patel, S. Siksek, “Shifted powers in Lucas-Lehmer sequences” Research in Number Theory, vol. 5, no. 1, pp. 1-27, 2019.
  • [2] J. J. Bravo, F. Luca, “Powers of Two as Sums of Two Lucas Numbers” Journal of Integer Sequences, vol. 17, no. 8, pp. 14-8, 2014.
  • [3] J. J. Bravo, F. Luca, “On the Diophantine Equation F_n+F_m=2^a” Quaestiones Mathematicae, vol. 39, no. 3, pp. 391-400, 2016.
  • [4] Y. Bugeaud, M. Mignotte, S. Siksek, “Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect Powers”, Annals of mathematics, vol. 163, no. 3, pp. 969-1018, 2006.
  • [5] Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, “Fibonacci numbers at most one away from a perfect power” Elemente der Mathematik, vol. 63, pp. 65-75, 2008.
  • [6] Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, “Perfect powers from products of terms in Lucas sequences” Journal fur die Reine und Angewandte Mathematik, vol. 611, pp. 109-129, 2007.
  • [7] L. Debnath, “A short history of the Fibonacci and golden numbers with their applications” International Journal of Mathematical Education in Science and Technology, vol. 42, no. 3, pp. 337-367, 2011.
  • [8] S. Kebli, O. Kihel, J. Larone, F. Luca, “On the nonnegative integer solutions to the equation F_n±F_m=y^a” Journal of Number Theory, vol. 220, pp. 107-127, 2021.
  • [9] T. Koshy, “Fibonacci and Lucas Numbers with Applications”, John Wiley and Sons, Proc., New York-Toronto, 2001.
  • [10] F. Luca, V. Patel, “On perfect powers that are sums of two Fibonacci numbers” Journal of Number Theory, vol. 189, pp. 90-96, 2018.

All Solutions of the Diophantine Equations $2F_{n}=3^{s}⋅y^{b}$ and $F_{n}±1=3^{s}⋅y^{b}$

Year 2022, Volume: 26 Issue: 3, 488 - 492, 30.06.2022
https://doi.org/10.16984/saufenbilder.1069960

Abstract

The Fibonacci sequence 〖(F〗_n) is defined by F_0=0, F_1=1, and F_n=F_(n-1)+F_(n-2) for n≥2. In this paper, we will give all solutions of the Diophantine equations 2F_n=3^s∙y^b and F_n±1=3^s∙y^b in nonnegative integers s≥0, y≥1, b≥2, n≥1 and (3,y)=1.

References

  • [1] M.A. Bennett, V. Patel, S. Siksek, “Shifted powers in Lucas-Lehmer sequences” Research in Number Theory, vol. 5, no. 1, pp. 1-27, 2019.
  • [2] J. J. Bravo, F. Luca, “Powers of Two as Sums of Two Lucas Numbers” Journal of Integer Sequences, vol. 17, no. 8, pp. 14-8, 2014.
  • [3] J. J. Bravo, F. Luca, “On the Diophantine Equation F_n+F_m=2^a” Quaestiones Mathematicae, vol. 39, no. 3, pp. 391-400, 2016.
  • [4] Y. Bugeaud, M. Mignotte, S. Siksek, “Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect Powers”, Annals of mathematics, vol. 163, no. 3, pp. 969-1018, 2006.
  • [5] Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, “Fibonacci numbers at most one away from a perfect power” Elemente der Mathematik, vol. 63, pp. 65-75, 2008.
  • [6] Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, “Perfect powers from products of terms in Lucas sequences” Journal fur die Reine und Angewandte Mathematik, vol. 611, pp. 109-129, 2007.
  • [7] L. Debnath, “A short history of the Fibonacci and golden numbers with their applications” International Journal of Mathematical Education in Science and Technology, vol. 42, no. 3, pp. 337-367, 2011.
  • [8] S. Kebli, O. Kihel, J. Larone, F. Luca, “On the nonnegative integer solutions to the equation F_n±F_m=y^a” Journal of Number Theory, vol. 220, pp. 107-127, 2021.
  • [9] T. Koshy, “Fibonacci and Lucas Numbers with Applications”, John Wiley and Sons, Proc., New York-Toronto, 2001.
  • [10] F. Luca, V. Patel, “On perfect powers that are sums of two Fibonacci numbers” Journal of Number Theory, vol. 189, pp. 90-96, 2018.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

İbrahim Erduran 0000-0003-3307-8181

Zafer Şiar 0000-0002-6473-4754

Publication Date June 30, 2022
Submission Date February 10, 2022
Acceptance Date April 18, 2022
Published in Issue Year 2022 Volume: 26 Issue: 3

Cite

APA Erduran, İ., & Şiar, Z. (2022). All Solutions of the Diophantine Equations $2F_{n}=3^{s}⋅y^{b}$ and $F_{n}±1=3^{s}⋅y^{b}$. Sakarya University Journal of Science, 26(3), 488-492. https://doi.org/10.16984/saufenbilder.1069960
AMA Erduran İ, Şiar Z. All Solutions of the Diophantine Equations $2F_{n}=3^{s}⋅y^{b}$ and $F_{n}±1=3^{s}⋅y^{b}$. SAUJS. June 2022;26(3):488-492. doi:10.16984/saufenbilder.1069960
Chicago Erduran, İbrahim, and Zafer Şiar. “All Solutions of the Diophantine Equations $2F_{n}=3^{s}⋅y^{b}$ and $F_{n}±1=3^{s}⋅y^{b}$”. Sakarya University Journal of Science 26, no. 3 (June 2022): 488-92. https://doi.org/10.16984/saufenbilder.1069960.
EndNote Erduran İ, Şiar Z (June 1, 2022) All Solutions of the Diophantine Equations $2F_{n}=3^{s}⋅y^{b}$ and $F_{n}±1=3^{s}⋅y^{b}$. Sakarya University Journal of Science 26 3 488–492.
IEEE İ. Erduran and Z. Şiar, “All Solutions of the Diophantine Equations $2F_{n}=3^{s}⋅y^{b}$ and $F_{n}±1=3^{s}⋅y^{b}$”, SAUJS, vol. 26, no. 3, pp. 488–492, 2022, doi: 10.16984/saufenbilder.1069960.
ISNAD Erduran, İbrahim - Şiar, Zafer. “All Solutions of the Diophantine Equations $2F_{n}=3^{s}⋅y^{b}$ and $F_{n}±1=3^{s}⋅y^{b}$”. Sakarya University Journal of Science 26/3 (June 2022), 488-492. https://doi.org/10.16984/saufenbilder.1069960.
JAMA Erduran İ, Şiar Z. All Solutions of the Diophantine Equations $2F_{n}=3^{s}⋅y^{b}$ and $F_{n}±1=3^{s}⋅y^{b}$. SAUJS. 2022;26:488–492.
MLA Erduran, İbrahim and Zafer Şiar. “All Solutions of the Diophantine Equations $2F_{n}=3^{s}⋅y^{b}$ and $F_{n}±1=3^{s}⋅y^{b}$”. Sakarya University Journal of Science, vol. 26, no. 3, 2022, pp. 488-92, doi:10.16984/saufenbilder.1069960.
Vancouver Erduran İ, Şiar Z. All Solutions of the Diophantine Equations $2F_{n}=3^{s}⋅y^{b}$ and $F_{n}±1=3^{s}⋅y^{b}$. SAUJS. 2022;26(3):488-92.